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A Physicist’s Approach to the Water Cycle:
Long-Term Changes in the Water Retention

Properties of Soils in the Sevilleta Shrubland
William Crockett

Abstract—New Mexico’s environments are heavily de-
pendent on the limited amount of water that they receive,
and climate models predict further aridification of the
Southwest. Although there have been studies on how
climate change is changing precipitation patterns, less
attention has been paid to modeling how climate change is
impacting soil water content and hydraulic conductivity,
which play a large role in determining water availability
in ecosystems and agriculture. To analyze whether the
soil moisture response to precipitation has changed, a 1-D
model, Phydrus (https://github.com/phydrus/phydrus), was
used to model soil water content in response to precip-
itation. Phydrus numerically solves the one-dimensional
Richards Equation using the Van Genuchten-Mualem
model to calculate the soil water content time series. We
used a data set of half-hourly measured precipitation and
soil moisture levels spanning 15 years from the SES station
in the Sevilleta National Wildlife Refuge, collected by the
Biology Department’s Litvak Lab. The precipitation data
was used as an input to model the soil water content.
To look at changes in the response, we found the best
parameters to fit the model to the soil moisture data for
1-month summer windows in 2008, 2013, and 2018. We
show that while it takes similar parameter values to fit
each window in the same year, the necessary parameters
change between years. These parameters represent how
water is absorbed into and conducted through the soil,
and the changing values of saturated water conductivity
and saturated water content suggest that the physical
properties of the soil may be changing over the long-
term. Differences in parameter values point to shifts in
soil water response over the last 15 years, which means
that the changes are occurring on a similar time-scale to
climate change.

I. INTRODUCTION

Over the next century, climate change will have
profound effects on the planet. Studies have shown
that the release of green-house gasses will lead to
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rising global temperatures, and an increased number
of extreme weather events[1][2]. While the effect
in local regions are harder to predict, models and
data show that the Southwestern United States will
have an increase in temperature and a change to
its precipitation events [3]. Although models show
a slight increase in total precipitation in the Chi-
huahuan desert, the events are predicted to become
more extreme, leading to large rainfalls that lead to
floods followed by long dry spells causing drought.

While many studies have been conducted to an-
alyze and model the impact of climate change on
Earth’s atmosphere and oceans, much less attention
has been payed to the impact of climate change
on geology. Recently, an analysis of soil samples
taken across the United states over the last 50 years
shows a change in macroporosity over a time-scale
comparable to climate change [4]. Macroporosity is
a measure of the amount of soil composed of large
macropores, which are responsible for a relatively
high amount of water conductivity. In most climate
models, geological properties are taken to be con-
stant due to the assumption that they are changing
much more slowly than the atmosphere. Showing
that geological changes can occur on a similar time-
scale illustrates the importance in understanding the
impact of climate change on soil properties. If cli-
mate change is leading to change in macroporosity
and other soil properties, it would impact water
availability to ecosystems and agriculture.

To find long-term changes in soil properties,
we analyzed a 15-year time-series of precipita-
tion events and soil water content at the Sevilleta
National Wildlife Refuge collected by the UNM
Biology Litvak lab. The goal was to find a model
that can accurately replicate the soil water content
data at a given depth when the precipitation events
were given as input. The best fit of the model to the
data was found for different windows throughout

https://github.com/phydrus/phydrus


W. CROCKETT, 2021-22 HONORS THESIS 2

Fig. 1. A 15-day window of precipitation (bottom) and soil water
content at a depth of 2 cm (top) at the US-SES site at the Sevilleta
National Wildlife Refuge. The window is a good example of the
similarity between the soil moisture response to a large precipitation
event and an exponential decay function.

the time-series, and by comparing the parameter
values of the best fit, we attempted to find patterns
of changing soil properties.

By finding clear changes in the soil water re-
sponse function over time, we can better understand
how climate change is impacting the water cycle in
New Mexico. The increase in macroporosity pre-
dicted by Hirmas et al. would mean lower saturated
water conductivity, intensifying the water cycle [5].
For desert ecosystems, this would mean that when
more extreme precipitation events occur, less of the
water infiltrates the soil, leading to lower water
availability [6]. Being able to properly model these
changes will help us better understand the impacts
of climate change in New Mexico, and allow the
state to plan and prepare for the future.

II. LINEAR MODEL

We started the project by taking a zeroth order
approach. The soil water content (SWC) following
a precipitation event looks similar to an exponential
decay, so we began by modeling SWC by the linear
sum of the exponential decay functions that result
from each precipitation event (figure 1).

The response function was modeled by:

g(t) = Aeρt (1)

We then used MATLAB to convolve the time-
series of precipitation events f(t) with the response
function g(t) to create a linear model of the SWC
time-series h(t). The convolution function is:

h(t) = (f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t− τ)dτ (2)

For a given window, a 3rd-degree polynomial was
fit to the entire data window, and then subtracted
from the data to reduce the effect of long-term
changes in SWC on the model’s fit. The Nelder-
Mead algorithm was employed using MATLAB’s
fminsearch function to find the values of A and ρ
that minimized the difference between the model
and data to find the best fit [7]. An example of the
output is shown in Figure 2.

As shown in the bottom plot of Figure 2, the
linear model is able to approximate the response to
a single precipitation event and represent the general
response, but it failed to accurately simulate SWC
for larger windows with more events. To analyze
how the soil moisture response is changing, we
needed a model that can accurately recreate the soil
moisture time-series for a given set of precipitation
events.

III. ONE DIMENSIONAL PHYSICAL MODEL

After our linear model failed to accurately model
the data, we attempted to more accurately model
the process by modeling the underlying physics
of the system. An illustration of the system is
shown in Figure 3. As shown, the system has a
reliance between the water content and the water
conductivity. As the soil dries out, paths for water to
flow through shrink or are cut off, until the amount
of water reaches a minimum, at which point water
conductivity goes to zero.

A. The Richards Equation and the Van Genuchten-
Mualem Model

We can model this relationship between water
content and water conductivity using a differential
equation. The infiltration of water into the soil is es-
sentially a fluid flow through porous media problem,
which is governed by the Richards Equation [8].
The equation represents the relationship between
water content, pressure, and conductivity:

∂θ

∂t
=

∂

∂z

[
k(θ)

(
∂h

∂z
+ 1

)]
(3)

Where θ is the soil water content, t is time, z is
depth, k is the water conductivity (how easily water
can infiltrate the soil), and h is the pressure head.
The dependence between the water content and wa-
ter conductivity leads to non-trivial solutions to the
equation, to some interesting nonlinear properties
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Fig. 2. Output of the linear fit model that convolves the precipitation time-series with an exponential decay response function. The top
plot shows SES 2 cm soil moisture data in black, and the long-term polynomial trend that was removed in red. The middle plot shows the
precipitation time-series. The bottom plot shows the SES data with the polynomial fit removed in blue, and the simulated data in black.

like hysteresis, and makes the equation difficult to
solve numerically.

There are several solutions to the Richards Equa-
tion, and we use the Van Genuchten-Mualem model,
a solution commonly used to model soil water
content [9]. The Van Genuchten-Mualem model is
given by the following two equations:

S =
θ − θr
θs − θr

=
1

[1 + (αh)n]
m (4)

k(θ) = ks
(

θ−θr
θs−θr

) [
1−

(
1−

(
θ−θr
θs−θr

) 1
m

)m]2
(5)

Together these equations model the water content
and the water conductivity as a function of the
pressure head. The equations have a total of 5 pa-
rameters, which all impact the relationship between
the three variables. θr is the residual water content,
the amount of water still present in the soil even at
high temperatures/pressures (the amount of water
present in the right diagram of Figure 3). θs is
the saturated water content: the maximum amount

of water the soil can hold (the amount of water
present in the left diagram of Figure 3). Equation (4)
solves for the saturation S a non-dimensionalized
and normalized measure of water content (while
θ goes from θr to θs, S goes from 0 to 1). The
water content depends on the pressure head h, where
the scaling parameter α and exponential parameter
n define the relationship between the two. The m
parameter is defined by n as follows:

m = 1− 1

n
(6)

The fifth parameter is ks, the saturated hydraulic
conductivity, which defines the maximum water
conductivity that occurs when the soil is fully
saturated. These parameters define the relationship
between pressure head, water content, and water
conductivity, which can be summarized in the water
retention curve, an example of which is shown in
Figure 4.

The fact that there is a dependence between water
content and water conductivity in the model lead to
nonlinear effects, including hysteresis. Hysteresis is
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Fig. 3. Cartoon showing the three material system, consisting of soil particles, water, and air. The left diagram shows fully saturated soil,
where the water content and water conductivity are at their maxima (θ = θs and k = ks). The middle pannel shows an intermediate stage,
where air has begin to enter, and both the water content and water conductivity are lower. The right panel shows the residual water case,
where the maximum amount of water has left the soil, and the water conductivity has gone to zero (θ = θr and k = 0). The red arrows are
examples of paths for water to flow through.

Fig. 4. Example of the Water Retention Curve for a given set of
parameters α, n, ks, θr, and θs. θr and θs define the limits of the
curve, and α, n, and ks define the curve’s steepness and shape. The
red and blue curves show the effect of hysteresis- the history of the
system changes the state of the system, even when all parameters are
the same.

Fig. 5. Example of the relationship between the soil water content
θ and the soil water conductivity k. As water content goes from
the residual water content θr to the saturated water content θs, the
conductivity goes from 0 to the saturated water content ks. The shape
of the curve is defined by α and n.
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the dependence of the system’s state on the history
of the system. For our case, it means that the
water conductivity and water content for a given
pressure head depends on what the pressure head
has been in the past, or whether the soil is drying
or wetting (Figure 4). We can also think about it in
terms of precipitation events: the soil water response
to a particular precipitation event will depend on
whether the last event was the previous day, week,
or month. These hysteretic effects are an important
reason why our linear model failed to accurately
replicate our data.

B. HYDRUS 1-D and Phydrus
In order to use the Richards Equation to model

soil water content from our data set, we need to be
able to relate precipitation to the pressure head, and
need to solve the equation over time. HYDRUS
1-D is a program that solves the Richards Equation
in one dimension, and can take a precipitation time
series as an input [10]. For a given set of parameters
and a precipitation time-series, HYDRUS will con-
struct a time-series of soil water content at a given
depth by numerically solving the Richards Equation
using the Van Genuchten-Mualem model.

For our work we used Phydrus, an open-source
implementation of HYDRUS 1-D as a Python mod-
ule [11]. This allowed us to more quickly implement
various conditions into the HYDRUS model without
using the GUI that is used in HYDRUS 1-D.

C. Fitting the Data
Windows were chosen that had multiple precipita-

tion events to better test the parameter fit. For data in
each window, a moving average was used to smooth
the half hourly data over 4 points to reduce noise
from the detectors, resulting in data points every 2
hours. Phydrus discretizes the soil column in the
Z direction, and columns were built to be 80 cm
deep with 160 nodes. The column was composed
of a single, uniform soil. Phydrus was also set to
output Soil Water Content at 2-hour intervals over
the window, to align with the smoothed data set. To
compare the fit, the root mean squared (RMS) value
was calculated between the smoothed data and the
Phydrus prediction.

To model the data, parameters were adjusted by
hand until the simulated SWC accurately modeled
the data, and any adjustment in the parameter values

Fig. 6. An example of a one month window from August 2008 fit
with Phydrus. The bottom plot shows half hourly precipitation events
in black, and the top plot shows moisture measurements at 2 cm at
US-SES in orange, and the modeled data in blue. Parameters used are
listed on the right. Although the fit is not perfect, the 1-D physical
model does a much better job than the linear model.

lead to an increase in the RMS value. An example
of a fit found for a 1 month window is shown in
figure 6.

D. Parameter Grid Search

To better understand the nonlinear relationships
between the five parameters used in the Van
Genuchten-Mualem model, a gridsearch was per-
formed in parameter space around the best fit for the
August 2008 window. Starting with the parameters
listed in Figure 6, the values of 2 parameters were
varied at a time, and the log-likelihood function of
the parameters given the data was plotted (Figure
7). The nonlinear relationships shown in these plots
illustrates the difficulty in finding the optimal pa-
rameters to model the given data, as it becomes
difficult differentiating the global minimum from
local minima. The location of the yellow stars show
how an optimal fit must find a balance in the full
5-D parameter space, which may not align with the
best fits in the 2-D parameter spaces shown.

IV. RESULTS

Best fits were found for 3 one-month windows
in the summer of 2008, 2013, and 2018, giving a
total of 9 windows (Figure 8). Summer windows
were chosen to model soil moisture response during
the monsoon season, a period of relatively frequent
precipitation events [12]. Windows with multiple
precipitation events were chosen to avoid over-
fitting the response to a single event. Each window
has a comparably low RMS value (the lowest was
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Fig. 7. Plots in parameter space of the log-likelihood function of the parameter values given the data set. Each plot shows the trade off
between each parameter pair when varied around the best fit for the August 2008 shown in figure 6. The yellow stars show the parameter
values that represent the best overall fit found.

found for August-September, 2018), suggesting rel-
atively good fits.

These fits were used to see if there are long-
term trends in parameter values over time. Figure
9 shows these fits in parameter space, showing how
these parameters vary between windows. The arrows
show the general trend the parameters appear to
follow between 2008, 2013, and 2018. There is a
decrease in the exponential term n, and the saturated
conductivity Ks, and there is an increase in the
saturated water content Qs.

V. CONCLUSIONS

The RMS values for the plots shown in Figure
8 suggest that the SWC at a depth of 2cm can
be accurately modeled using the Van Genuchten-
Mualem model. Figure 9 shows that there are
long-term trends in parameter values, where the
variability within each year is smaller than the
total variability. This suggests that the changes in
parameters represent a real change in the soil water

response, which could be due to changes in soil
properties. The fact that these changes occur over a
similar time-frame as climate change suggests that
the two are correlated.

The one dimensional model is still an approxima-
tion of the system that leaves out important three
dimensional effects, meaning that it will not be a
completely correct model. However, finding system-
atic, long-term variation in the model’s parameter
values offers a way to study long-term change in
soil properties.

The decrease in Ks supports the prediction from
Hirmas et al., who predicted a decrease in saturated
water conductivity due to an increase in macrop-
orosity [4]. The decrease in n and increase in Qs
also support change in soil properties between the
years, although it is not clear whether these changes
are connected to soil macroporosity or are due to
another effect.

Decrease in saturated conductivity means that
it is more difficult for water to infiltrate the soil.
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Fig. 8. Nine one month windows where a HYDRUS 1-D best fit was found. Three one month windows were made from the summer
in 2008, 2013, and 2018. RMS and parameter values are reported for each plot. The best fit parameters are plotted in Figure 7. Parameter
values are relatively similar between windows of the same year, but there is a significant decrease in n and Ks from 2008 to 2013, and an
increase in Qs from 2013 to 2018.

Coupling this with the increase in more extreme
precipitation events followed by longer periods of
drought would mean an even greater reduction in
ecosystem water availability and more runoff [3][4].
The SES site receives an average of 270 mm (10.75
in) of precipitation per year, making water one of
the most important limiting factors in the ecosystem.
Any decrease in water availability will have pro-
found consequences for the organisms that inhabit
this landscape.

A. Future Work
In order to further these findings, I plan on finding

the best fits for more windows across the data set.
This will allow us to build a set of time-series for
the parameters themselves, which would allow us to
more clearly see these changes.

Changes in three dimensional effects, due to
things like changes in vegetation growth or change
in landscape due to erosion, could lead to changes
in soil moisture response that the one dimensional
model fails to capture. Modeling the soil moisture
response at other sites in the Sevilleta (the Litvak
Lab has a total of 3 sites at the Sevilleta where they

have been collecting data for comparable amounts
of time) would help determine whether the changes
in parameter values are due to changes in soil
properties correlated with climate change or whether
they are due to changing 3-D conditions. If we find
similar trends across the sites, the changes must be
due to something impacting all of them, and we can
rule out 3-D effects.

I plan on finishing a Bayesian Monte Carlo al-
gorithm that can sample the 5 dimensional param-
eter space and assist in finding the best fits for a
given window. This will help automate the process,
allowing us to produce time-series of parameter
changes for other sites. The Litvak Lab has sites
in seven of New Mexico’s ecosystems, ranging from
elevations of 1593 meters (5225 feet) to 3000 meters
(10,000 feet) and annual precipitations from 270
mm (10.75 in) to 650 mm (25.5 in). Modeling the
long-term changes in soil properties at each of these
sites would give us a comprehensive view of soil-
properties across New Mexico.
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Fig. 9. Plots in parameter space of the best fit values for the nine windows shown in figure 8. Arrows indicate the general trend the
parameters appear to follow between 2008, 2013, and 2018. There appears to be a general decrease in the exponential parameter n, and the
saturated conductivity Ks, as well as an increase in saturated water content Qs.
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