
A New Model for Early Kinetic Decoupling of Dark
Matter

Ivey Davis

Abstract

Dark matter has been recognized as a significant constituent of the uni-
verse. In particular, a particle species with a self annihilation cross section of
3 × 10−26cm3s−1, mass of ∼ 100 GeV and that interacts with standard model
particles via the electroweak force is of interest due to its provision of the correct
dark matter abundance while also agreeing with supersymmetric expectations of
a new particle species. However, it is difficult to obtain early kinetic decoupling
that enhances small scale structure formation without fine tuning. In this paper,
we present a new model for dark matter wherein we include an unstable standard
model particle which dark matter annihilates into and can scatter off of, allowing
for early kinetic decoupling without changing the properties of the particle which
satisfy the ”WIMP miracle”.

1 Introduction

Various lines of observational evidence suggest that most of the matter in the universe
is non-luminous, i.e. dark matter (DM). Despite the fact that DM makes up ∼ 80%
of the matter composition and roughly a quarter of the total energy density of the
universe, many features of DM– including its identity– remain elusive [8]. Evidence
from astronomical observations together with theoretical models of structure forma-
tion suggests that DM could consist of non-relativistic particles that have (very) weak
interactions with ordinary matter, a notable example of which is weakly interacting
massive particles (WIMPs) [4].

Observational constraints on DM properties arise largely from cosmic microwave
background (CMB) and Lyman-α forest observations which probe the largest and
smallest scales of DM respectively. The scale of temperature perturbations in the
CMB as well as the way that Lyman-α forests indicate the mass quantity for a va-
riety of redshifts help to characterize the matter power spectrum (MPS). The MPS
relates density perturbations in matter to the scale of the perturbation. Perturbations
of DM start to significantly grow once it dominates the energy density of the universe.
However, DM particles can freely stream out of overdense regions and into underdense
ones from the time they kinetically decouple from ordinary particles until the time of
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matter-radiation energy density equality. The traveled distance, called the free stream-
ing length λfs, represent the scales below which DM perturbations smooth out, which
in turn affects the minimum mass of structures that can form due to gravitational
collapse. The earlier the kinetic decoupling of DM particles from the early universe
plasma, the smaller λfs will be [6], [5]. The moment of decoupling depends on the
rate of energy transfer between the DM and ordinary particles Γkin. In general, this
is related to the rate of DM annihilation into ordinary particles Γann, which sets the
DM relic abundance. Thus, lowering Γkin to have an early kinetic decoupling typically
implies a smaller Γann, and hence gives trouble in obtaining the observed DM abun-
dance (unless there is fine-tuning). In this paper, we present a model to separate Γkin
and Γann to achieve an early kinetic decoupling without affecting the DM abundance
and without fine-tuning. Specifically, we include a second, less massive particle species
which the DM can maintain kinetic equilibrium through after its freeze out [10], [17].
The goal in exploring early kinetic decoupling is the boosting it provides for the pro-
duction of small scale substructure. This enhancement in turn increases the likelihood
of making indirect detections of DM in dwarf spheroidal galaxies through its annihila-
tion products. The specific goal of our new model is to explore the possibility of this
early kinetic decoupling without changing the relic abundance of DM.

In the following sections, we provide further background on the dynamics of DM in
the early (radiation dominated) universe and the effect it has on the properties of DM
today (section 1.1). This is done to provide better physical context for the differences
between the model of the standard picture in section 2 and the model we introduce
in section 3.1. We go into further detail on the equations we use and the results of
solving them in section 3.2. We conclude the paper in section 4 with an overview of
the results and significance as well as discuss considerations for future work.

1.1 Further Background

DM was initially introduced as a solution to the fact that galaxies do not exhibit
rotation curves indicative of either rigid body or Keplerian motion. The role of DM
in describing gravitational influences in the Universe and its effect on the development
of structure was confirmed via observations of phenomena like the CMB and Lyman-α
forests which give insight to the scale and distribution of density perturbations which
are represented by the MPS. One of the startling qualities of DM models, particularly
those which focus on “cold” DM (CDM) is just how closely they match the observed
MPS spectrum. For this reason, CDM– as opposed to “warm” DM (WDM)– has
been the major focus of DM investigations and searches, especially the class of DM
particles known as WIMPs, which only interact with standard model particles via
the electroweak force. WIMPs make a convenient candidate for DM given that its
thermally averaged annihilation cross section – 3 × 10−26 cm3s-1 – is agreed upon by
both cosmological observations and supersymmetric particle physics models for a mass
of 100 GeV in such a serendipitous way as to be dubbed the “WIMP miracle”.

CDM gets its name following its definition of being nonrelativistic. The importance
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of its nonrelativistic quality is manifested in its free streaming length. The effect
that a particle’s velocity has on its free streaming length can be thought of in the
context of considering density perturbations as gravitational wells; the greater the
perturbation, the higher the particle’s velocity needs to be in order to escape the
perturbation. Therefore, CDM is confined to smaller density perturbations, which is
equivalent to saying that its λfs is small. This is in contrast to the more relativistic
WDM whose velocities are such that they can escape the small scale perturbations and
hence smooth them out. In this way, CDM promotes small scale structure formation
while WDM promotes structure formation on the large scale. This further means that
CDM promotes a “bottom up” evolution for galaxy formation, wherein the favored
small scale substructures eventually amalgamate into the larger galactic and galactic
cluster scales that we observe today.

The velocity of DM is set by its temperature at the time of its kinetic decoupling.
When the particles are nonrelativistic but still coupled to the thermal bath, then the
kinetic energy of the particle is given by the expression of a fluid in thermal equilibrium:
3kBT = mv2 so that v ∝

√
T . At the point of kinetic decoupling, the DM particle

ceases to interact with the primordial plasma and leaves thermal equilibrium such that
v ∝ T . The temperature scales inversely with the scale factor of the universe a –
i.e. the temperature of the universe drops as it increases in size– so that v ∝ a−1

post-decoupling. The scale of the largest perturbation is restricted by the scale factor,
hence earlier decoupling and larger T implies a smaller a and smaller free streaming
length. More explicitly:

λfs =

∫ teq

0

v(t)

a(t)
dt ≈ r(tNR)(1 +

1

2
log

teq
tNR

) (1)

where tNR is the time when the DM becomes nonrelativistic, teq is when the DM leaves
kinetic equilibrium, and r(tNR) is the comoving size of the horizon at tNR [18]. The
importance in favoring a small streaming length and enhancing the small scale sub-
structure is that the chances of making indirect detections of DM via annihilations
are increased due to an increased density of substructure [16]. Therefore, in the next
sections, we will discuss the physics of the standard picture to emphasize why the intro-
duction of a new model is important in increasing the likelihood of indirect detections
of DM.

2 The Standard Picture

In the standard picture, the DM particle χ can annihilate into much smaller particles
φ such that χχ ↔ φφ and can scatter off of φ particles like χφ ↔ χφ. The rate of
energy transfer Γkin is proportional to the product of the thermally averaged scattering
cross section < σscv > and the equilibrium number density of φ– the number density
of φ that allows thermal equilibrium with the ambient plasma– neqφ that is given as a
function of temperature T in equation 2, where p is the momentum for the particle
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Figure 1: The solution for equation 6 as well as the equilibrium number density given
in equation 2. As this shows, nχ tracks neqχ for T > mχ when both the annihilation
and inverse processes can occur. When T drops below the mass (100 GeV), the inverse
process can no longer be supported and the number density decreases rapidly. This
accelerated decrease in nχ continues until T ∼ m/22, at which point Γann drops below
H and nχ freezes out.

and m is the mass. Similarly, the annihilation rate of χ is proportional to the product
of the thermally averaged annihilation cross section < σannv > and the χ equilibrium
number density neqχ .

neq =
4π

(2π)3

∫ ∞
0

p2e
√
p2+m2/T 2

dp (2)

The interaction between χ and φ is described by the Boltzmann equation in equation
3 [13], [14]. On the left hand side, L[f ] is the Liouville operator that describes the time
evolution of the phase space density and C[f ] is the collision operator which describes
the type of interactions that can occur between χ and φ.

L[f ] = C[f ]⇒ dnχ
dt

= −3Hnχ− < σannv > (n2
χ − n2

eq) (3)

On the right hand side, the expansion rate of the universe H during the radiation
dominated era as function of time is given as:

H =
1

2t
(4)
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Using natural units, where ~ = c = kb = 1, mass and temperature can both be
expressed in units of energy. With this convention, the point where the temperature
T . mχ, where mχ is the mass of the χ particle, the χχ↔ φφ expression is no longer
two way as the ambient temperature of the thermal bath is no longer sufficient to
support the inverse annihilation process of the φ particles back into χ. This causes nχ to
begin dropping rapidly and χ becomes nonrelativistic. Further, the dependence of Γann
on nχ causes the annihilation rate to drop below H for sufficiently low T ; the expansion
rate of the Universe becomes greater than the interaction rate between χ particles,
hence preventing them from further annihilating with each other. Because they can no
longer annihilate, the number of χ particles remains constant with comoving volume
and is considered to be frozen out; the relic number density is set. This happens at a
temperature Tfr ∼ mχ/20, or about 5 GeV for a 110 GeV particle like we consider [14].

Although, the χ particles have stopped annihilating, they can still scatter off of
the φ particles and maintain kinetic equilibrium until Γkin < H. However, because
< σscv >≈< σannv >, the difference between Γann and Γkin is dependent on the
difference between the number densities of the φ and χ particles. Because the φ particle
is so light – essentially massless compared to the χ particle– the nφ does not freeze
out until much later and hence Γkin � Γann. Therefore, the kinetic decoupling occurs
much later than freeze out, at a temperature Tkd ∼ 1 MeV [7]– roughly the temperature
of neutron freeze out [15]– as compared to the ∼ 1 GeV freeze out temperature for a
canonical WIMP mass. To get earlier decoupling in this model, there typically needs to
be significant fine tuning regarding the cross section of the DM [11], which then affects
the DM relic abundance. The goal of the model presented next is to push Tkd closer
to Tfr without this fine tuning so that the correct relic abundance can be preserved.

3 The New Model

3.1 Theory

In the model we use for this work, we consider a similar interactive circumstance as in
the standard picture where χ can annihilate into and scatter off of a lighter particle
species. However, the annihilation product considered here, χ′, is much more massive
than the φ particle with mχ & mχ′ . The χ′ is also unstable and thus decays like
χ′ → ψψ at some rate Γdec where mχ, mχ′ � mψ. Although there are now three
particle species to consider, because χ′ is so massive, interactions between χ and ψ
particles are negligible; processes like χχ↔ ψψ and χψ ↔ χψ are suppressed. Again,
once Γann < H (still at T ∼ mχ/20), the χ particle’s number density freezes out,
setting the relic number density. However, the decaying property of χ′ means its
number density isn’t strictly dependent on nχ and hence Γkin and Γann are no longer
so heavily linked. Because the χ′ particle is so massive and is also experiencing decay,
its freeze out can happen much earlier than in the case of the φ particle and kinetic
decoupling can occur much closer to the freeze out of χ. This is all to say that the
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χχ ↔ χ′χ′ process sets the relic abundance while the χχ′ ↔ χχ′ process governs the
kinetic decoupling, thereby making early kinetic decoupling possible without altering
the cross section– and hence the relic abundance– of DM.

3.2 Methods and Results

In order to understand how the temperature of the χ particle evolves with the temper-
ature of the ambient plasma, it’s convenient to express the Boltzmann equation from
equation 3 in terms of temperature using the following expression for time:

t =
1

4

√
90

π2g

mp

T 2
(5)

where mpl is the Planck mass and g is the number of relativistic degrees of freedom.
This then gives the temperature derivative of nχ as:

dnχ
dT

=

√
90

π2g

mp

T 3
[3Hnχ+ < σannv > (n2

χ − n2
χ,eq)] (6)

Because of the role that χ′ plays in kinetic decoupling, we also include an equation
which accounts for the evolution of the nχ′ particle, given as:

dnχ′

dT
=

√
90

π2g

mp

T 3
[3Hnχ′+ < σannv > (n2

χ′ − n2
χ) + Γdec(nχ′ − nχ′,eq)] (7)

There are a couple of distinctions between equations 6 and 7. The most obvious
difference is the inclusion of the Γdec(nχ′−nχ′,eq) term in equation 7 which accounts for
the decay of χ′. The second, perhaps more subtle difference, is the < σannv > (n2

χ′−n2
χ)

term. The inclusion of nχ is what couples equation 7 to equation 6; although nχ
evolves independently of the properties of χ′ that we consider here, the role of χ in the
production of χ′ means nχ must be included here to obtain the correct nχ′ .

The numerical solutions of nχ′ from these coupled equations, found using MAT-
LAB’s ODE15s solver (see appendix A for a more detailed discussion of the program-
ming methods) are shown in figure 2 when using g = 100, the canonical annihilation
and scattering cross sections of 3× 10−26 cm3s-1 ≈ 2.5× 10−9 GeV-2, a mass mχ = 110
GeV that is consistent with such a cross section, and a decay rate of 10−5 GeV. As
expected, χ freezes out at T ≈ 5 GeV regardless of the mass of χ′, and the smaller
mχ′ the later the the freeze out of nχ′ . An important feature of this plot is that even
for mχ = mχ′ , nχ′ still freezes out later than nχ; freeze out of nχ′ cannot occur until
after χ particles stop annihilating and producing χ′ particles. Also as expected, the
case of mχ′ = 0, which is representative of the standard picture, shows the freeze out
of χ′ happening for much lower temperatures, hinting at the late kinetic decoupling
predicted by the standard picture.
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Figure 2: The solutions for nχ′ for various mχ′ . The solution for nχ – which is inde-
pendent of the mass of χ′– is also included here in order to give a better sense of the
difference in scales of nχ and nχ′ at the times of their freeze out. mχ′ = 0 is represen-
tative of the standard picture case. As this shows, the more massive χ′ is, the closer
its freeze out occurs to the freeze out of χ.
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To find when kinetic decoupling occurs, we then introduce the following equation
which describes how the temperature of χ, Tχ, evolves with the ambient temperature
(for example see [19]):

dTχ
dT

= −
√

90

π2g
(α < σannv > nχ′(T − Tχ)− 2HTχ) (8)

Here, α is a kinematic factor that accounts for the amount of energy transferred per
scattering; α ∼ T/mχ for T > mχ′ and mχ′/mχ for T < mχ′ . This expression is
coupled to equations 6 and 7 through its dependence on nχ′ .

The solution for this is shown in figure 3. While the χ particle is still kinetically
coupled to the thermal bath, its temperature is the same as the ambient temperature,
just as it should be. Then the point where Tχ goes from being proportional to T and
begins being proportional to T 2 is when kinetic decoupling occurs. For mχ′ = mχ, this
happens at Tkd ≈ 4.5 GeV, a temperature three orders of magnitude higher than is
provided by the standard picture.

The significant difference in the kinetic decoupling temperatures is made even more
apparent when considering the effect it has on the scale of the free streaming mass
Mfs. We use the following expression:

Mfs ≈ 2.9× 10−6
[

1 + ln(g1/4Tkd/50)/19.1

(mχ/100)1/2g1/4(Tkd/50)1/2

]3
M� (9)

where Tkd is in MeV and mχ is in GeV. Plugging the appropriate values into this
equation then gives an Mfs of 2.026 × 10−10M�. This is ∼ 5 orders of magnitudes
smaller than the 1.76 × 10−5M� that’s achieved in the case of the standard picture.
Therefore, replacing the massless particle of the standard picture with an unstable,
massive particle allows us to drastically decreases the lower limit on the mass of the
substructure which the DM can produce, suggesting we should be much more likely to
witness the products of annihilation events and hence indirectly detect DM.

4 Conclusion

Despite the significant contribution that DM makes to the mass and total energy den-
sities of the Universe, the actual identity of DM still eludes us ( [3], [9], and [12] provide
good reviews). What we do know about DM is highly influenced by the MPS. What it
suggests is that DM was nonrelativistic when it kinetically decoupled from the thermal
bath of the early Universe in order to support the presence of small scale structures in a
bottom-up approach to the construction of large scale structures. Assuming a thermal
production method for DM, then we also find an annihilation cross section that coin-
cidentally agrees with supersymmetric expectations for the annihilation cross section
of a 100 GeV particle that interacts with standard model particles via the electroweak
force. This inclines us to favor such particles in models.
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Figure 3: The solution of Tχ following the simultaneous solving of equations 6, 7, and
8. mχ′ = 0 is representative of the standard picture case, and shows kinetic decoupling
occurring at Tkd ∼ 1MeV.
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All of these properties provide important restrictions for modelling DM. However, in
the standard picture where DM interacts with an essentially massless particle species,
it is difficult to get early kinetic decoupling– and hence small free streaming lengths–
without fine tuning the annihilation cross section. In order to get early kinetic decou-
pling without fine tuning, we use a massive, unstable particle in place of the massless
one. By doing this, we find DM kinetically decoupling at a temperature three or-
ders of magnitude higher than in the standard picture case, which corresponds to a
free streaming mass scale five orders of magnitude smaller than the standard picture
predicts without changing the relic abundance.

In pushing down the lower limit of the free streaming mass, the protohalo sub-
structure density is significantly enhanced. Because we didn’t need to decrease the
annihilation cross section or rate to get the earlier decoupling, this then suggests that
in this model we are more likely to indirectly observe DM through the products of
annihilation events. Furthermore, the 110 GeV DM mass that we use is ideal for direct
detection searches that use a scattering target like Xenon with a nuclear mass of 120
GeV [1], [2] while still being consistent with WIMP mass expectations.

The particle physics of the massive annihilation product of DM is a point of in-
terest for future work. It is also important to consider this model in the context of
nonstandard thermal histories, namely when an early matter domination era is consid-
ered. In this case, matter domination occurs before big bang nucleosynthesis, which
has an interesting impact on the evolution of the scale factor, the expansion rate of
the Universe, and consequently when freeze out and kinetic decoupling can occur and
when structures can begin forming [19]. This is therefore a topic of major interest for
future work.
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A Programming Methods

The evaluations of the differential equations presented in this paper were done using
MATLAB’s ODE15s solver. These expressions cannot be solved analytically and we
further experienced two main issues when trying to solve the expressions numerically.
The first was the solver’s ability to accommodate the stiffness of the expression, espe-
cially where the number density is Boltzmann suppressed and drops several orders of
magnitude rapidly. The second issue was the machine’s ability to accommodate the
precision necessary for numerical analysis of the small number densities post-freeze out.

These problems are initially solved by splitting up the original thermal bath tem-
perature range of interest Trang into a collection of smaller temperature intervals Tint.
ODE15s is then run on each of these intervals and uses the final solution of an interval
as the initial values for the following interval, where the very first initial condition is
that the number densities are at the equilibrium value, which is valid for T � mχ.
This works well especially for the first problem described, however, additional issues
arise in regards to the second problem. Specifically, not many intervals are necessary
for the evaluation at higher temperatures, but many are needed to get the appropriate
precision of the small number densities at lower temperatures. Given that Trang spans
∼ 6 orders of magnitude and that Tint needs to be roughly on the order of 10−3 to get
solutions for T . 1, a static Tint would require 109 iterations to evaluate the entire
temperature range. This just wasn’t feasible considering the hardware available (my
personal laptop).

In order to reach the necessary precision in the solution without increasing the
number of intervals to unreasonably high numbers, we employ a dynamic step size
that is dependent on the order of magnitude of the most recently used thermal bath
temperature. At each iteration, the step size is set to two orders of magnitude less
than the last value of the temperature that was used, e.g. if the temperature is 500
GeV, the step size is 1 GeV. This reduces the number of intervals necessary to evaluate
the same 6 orders of magnitude to less than 10,000. Figure 4 shows what the solutions
look like if MATLAB tries to solve the entire 1000 GeV temperature range at once. A
comparison between the solutions provided by equal sized steps and by dynamic step
sizes are shown in figures 5 and 6. It’s obvious from these figures that using a dynamic
step size significantly improved not only the solutions, but also the processing time
necessary to achieve them.
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Figure 4: The solutions of equations 6 and 7 when ODE15s is given the entire temper-
ature range at once .
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(a) The solution to equation 7 if the evaluation interval size is
fixed (∼ 2.5 GeV per iteration).
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(b) The solution to equation 7 if the evaluation interval size is one
order of magnitude smaller than the temperature being evaluated
(i.e. when T = 500 GeV, Tint = 10 GeV).

Figure 5: A comparison of the solution for equation 7 if a dynamic step size is used as
opposed to a static one. For the same number of intervals, the solutions from using a
dynamic step size are significantly better.
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fixed (∼ 0.22 GeV per iteration).
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(b) The solution to equation 7 if the evaluation interval size is two
orders of magnitude smaller than the temperature being evalu-
ated (i.e. when T = 500 GeV, Tint = 1 GeV).

Figure 6: A comparison of the solution for equation 7 if a dynamic step size is used as
opposed to a static one, with the number of steps being ∼ 10× greater than used in
figure 5.
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