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II. ABSTRACT

Non-standard thermal histories have recently attracted significant attention due to a
combination of experimental and theoretical considerations. In a well-motivated class of
models the universe went through an epoch of early matter domination (EMD) before it
was one second old. The standard scenario of EMD involves on species whose equation of
state is the same as that of non-relativistic matter. Here, we consider a generalized scenario
where EMD is driven by a large number of such species.

We will start by setting up a system of coupled Boltzmann equations that govern evolu-
tion of the radiation energy density in generalized EMD. Then we will consider two explicit
examples that involve a large number of modulus fields and a population of small primor-
dial black holes (PBHs) respectively. We will find the temperature of the universe during
EMD by numerically solving the system of Boltzmann equations and also provide analytical
approximations in both cases. Our main conclusion is that the generalized EMD scenario
includes a long intermediate stage during which the temperature behaves very di↵erently
from that in the standard scenario of EMD. This can have very important consequences for
production of dark matter (DM) relic abundance.

III. INTRODUCTION

Cosmology has evolved into a precise experimental science over the past few decades.
The influx of high quality data from various observations, made possible by advances in
technology, has led to the emergence of the ”Standard Model of Cosmology” that describes
the universe and its evolution to the present state based on only a few parameters. Accord-
ing to the standard cosmological model, also known as “⇤CDM, the energy budget of the
universe at the present time is roughly 5% matter, 25% DM, and 70% dark energy [1]. This
model successfully describes evolution of tiny density fluctuations of O(10�5) in the early
universe, found imprinted in temperature anisotropy of the cosmic microwave background
(CMB), into structures such as galaxies and galaxy clusters. The dominant paradigm for
explaining primordial density fluctuations is a brief period of superluminal expansion of the
early universe called “inflation” [2]. Transition from inflation to hot big bang that leads to
establishment of a thermal bath of elementary particle is called ”reheating”[3].

In a “standard thermal history,” shortly after inflation ends the universe enters a
radiation-dominated (RD) phase of thermalized relativistic particles, which persists for
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⇠ 50, 000 years when a matter-dominated (MD) era begins (called ”matter-radiation equal-
ity”). This provides an attractive and predictive picture that allows the use of systems of
Boltzmann equations to follow processes among particles in the thermal bath until they
become ine�cient (i.e., the rate for a given process becomes smaller than the expansion rate
of the universe). In regards to DM [4] this gives rise to a scenario where the DM relic abun-
dance is set when annihilation of DM particles to ordinary particles ceases to be e�cient.
The correct DM abundance can be obtained within this scenario for weakly interacting
massive particles (WIMPs) as DM candidate, hence called “WIMP miracle.”

Despite being simple and predictive, there is no direct observational evidence for the
standard thermal history. Currently, primordial synthesis of light nuclei, called big bang
nucleosynthesis (BBN) [5], is our best direct probe of the earliest moments of the universe.
Agreements between BBN predictions and observations indicate that the universe was indeed
in a RD phase when it was one second old. However, observations do not give us information
about the state of the universe at much earlier times. Moreover, from the theory side, there
are well-motivated particle physics models of the early universe that predict a non-standard
thermal history [6]. In these models the universe goes through an early phase similar to MD,
hence ”early matter domination” (EMD), that ends prior to the onset of BBN. An epoch of
EMD can have important cosmological implications, notably for alternative mechanisms of
DM production [7].

Therefore, experimental and theoretical considerations motivate studying non-standard
thermal histories and their cosmological consequences. The proposed research aims at inves-
tigating issues in this direction with a particular emphasis on an EMD phase and temperature
of the universe in such an era.

An epoch of EMD typically arises in non-standard thermal histories. This epoch is driven
by species behaving like non-relativistic matter (so that pressure basically vanishes). In order
to establish a RD universe before BBN occurs, this phase must end well before the universe
is one second old. By taking the exponential decay of unstable species to radiation into
account, one can solve a system of equations that govern the evolution of energy densities
in matter and radiation. After using the well-known relation between the energy density of
radiation and its temperature ⇢r = (⇡2

/30)g⇤T 4, where g⇤ denotes the number of relativistic
degrees of freedom, it can be shown that during EMD temperature evolves di↵erently from
that in a RD universe [8]. As a consequence, production of DM particles during EMD
proceeds very di↵erently form that in RD. In particular, a period of EMD opens up large
parts of the parameter where the correct DM relic abundance can be obtained [9].

In the standard picture, EMD is driven by the energy density of a single species with zero
pressure, which is typically coherent oscillations of a scalar field that arises in extensions
of the “Standard Model of Particle Physics.” Realistic models, however, contain more than
one of such species. For example, models motivated by string theory include a number of
modulus fields that can undergo coherent oscillations in the early universe [6]. Also, models
based on supersymmetry include a large number of scalar fields that can lead to coherent
oscillations in specific directions in their field space [10]. Moreover, it is possible to have
other species in the early universe that behave like matter such as PBHs [11]. A population
of small PBHs may form shortly after inflation ends and decay to radiation and DM before
BBN [12].

The goal of this research is to investigate situations where the EMD phase is driven
by more than a single species and to study evolution of the temperature of the universe
during EMD in these situations. After a brief review the standard EMD scenario, we will
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consider the simplest case where two species (for example, two scalar fields undergoing
coherent oscillations) are responsible for EMD. We will find the temperature in this case by
numerically solving the system of equations that govern evolution of the energy densities of
these species and radiation. Next, we will consider a general situation where a population of
species within a continuous mass range with a distribution function �(m) drives the EMD.
We will first set up the system of equations that govern the evolution of these species and
their decay into radiation. We will then specialize to two physically motivated cases: (1) a
population of modulus fields, and (2) a population of PBHs.

IV. NOTE

All theoretical and numerical calculations in this paper are calculated using natural units
and the reduced Plank Mass:

~ = k = c = 1

Mp = 2.4 ⇤ 1018GeV

1.52 ⇤ 1024s�1 = 1GeV

V. EARLY MATTER DOMINATION: THE STANDARD SCENARIO

We will start with the standard EMD scenario that involves a single species. This case is
described by the following Boltzmann equations whose complete derivation is discussed in
Kolb and Turner:

d⇢1

dt
+ 3H⇢1 = ��1⇢1 ,

d⇢r

dt
+ 4H⇢r = �1⇢1 ,

da

dt
= aH ,

H =

✓
⇢r + ⇢1

3M2
P

◆1/2

. (1)

Here the subscript 1 represents the species behaving like matter, the subscript r represents
radiation, H denotes the Hubble expansion rate, a is the scale factor of the universe, and
MP is the reduced Plank Mass.

The system of equations is solved using MatLab and the built in ode15s (or the ode45)
di↵erential equation solver. This solver is a variation on the Runga-Kutta method and is
specifically built to handle steeply changing functions. The reason we use this solver (and
the ode45 solver) is because after the matter field has decayed to the point where the energy
densities of matter and radiation are equal, the density of matter drops o↵ rapidly as it is
decaying into radiation in an exponential manner. This quick drop o↵ is too di�cult for
most solvers to handle and can cause interference with results concerning the final radiation
density that produce incorrect behavior. The ode15s and ode45 solvers are built to handle
this and more information is available on the MatLab website.
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The graph of the matter energy density, radiation energy density, and the total energy
density as a function of the scale factor (normalized to its initial value) is shown in section
nine figure one. The decay rate is �1 = 10�9

H0 , where the initial Hubble expansion rate
follows H2

0 = ⇢0/3M2
P
. The temperature can be obtained from ⇢r using the the well known

relation:

⇢r =
g⇤⇡

2
T

4

30
(E.1)

mentioned before, and its graph is shown in section nine figure two.
For � ⌧ H ⌧ H0, we can find an analytic expression for T . In this regime, 4H⇢r term

can be neglected. Furthermore, ⇢1 mainly changes due to the expansion of the universe as
the decay is in its initial stages, which implies ⇢ / a

�3.
Plugging this relation into the radiation energy density equation, we find:

d⇢r

dt
/

�1

a3
. (2)

From the definition of the Hubble expansion rate H = da/adt, we can write dt = da/aH.
After using the fact that in a MD phase H / a

�3/2, we arrive at:

d⇢r

da
/ �1a

�5/2
. (3)

Integrating this equation over da, and using ⇢r / T
4, we find:

T / a
�3/8 (E.2) (4)

This well-known scaling of T with a [8] is observed in the temperature graph above.
Contrasting it with the scaling relation:

T / a
�1 (E.3)

due to Hubble expansion alone, we see that temperature during EMD decreases more slowly
than in a RD phase. This can be intuitively understood as follows: while during RD
temperature decreases due to expansion only, in EMD decay of unstable species to radiation
partially compensates the e↵ect of expansion.

A simple extension of the standard scenario involves two matter species decaying into
radiation. In this case the system of Boltzmann equations is:

d⇢1

dt
+ 3H⇢1 = ��1⇢1 ,

d⇢2

dt
+ 3H⇢2 = ��2⇢2 ,

d⇢r

dt
+ 4H⇢r = �1⇢1 + �2⇢2 ,

da

dt
= aH ,

H =

✓
⇢r + ⇢1 + ⇢2

3M2
P

◆1/2

. (5)
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These equations are solved once again using ode45 resulting in figure three of section
nine (assuming the two species have the same initial energy density). The temperature
distribution is shown in figure four of section nine.

The notable feature is that temperature scales as T / a
�3 for H � �1 and �2 ⌧ H ⌧ �1,

but decreases more steeply in the intermediate regime (for a detailed discussion, see [13]).
This shows that adding one more species to the standard scenario can significantly a↵ect
evolution of the temperature during the EMD epoch.

VI. THE CONTINUUM LIMIT

Before moving onto the explicit examples analyzed, we consider the continuum limit
where the EMD epoch is driven by a continuous distribution of species over a mass range.

The complete set of Boltzmann equations in the continuum limit are:

d�(m)

dt
+ 3H�(m) = ��(m)�(m) ,

d⇢r

dt
+ 4H⇢r =

Z
mmax

mmin

�(m)�(m)dm ,

H =

 
⇢r +

R
mmax

mmin
�(m)dm

3M2
P

!1/2

. (6)

Multiplying the first equation by a
3 results in the following expression for �(m):

�(m) =
�0(m)a30

a3
e
��mt

. (7)

In order to obtain analytical approximations for ⇢r and T , we need more information
about �0(m) and �(m). Here we consider two well-motivated cases that we have studied in
the explicit examples discussed below.

1. Modulus fields

Moduli are scalar fields that arise in models based on string theory [6]. Their value at
the minimum of their potential determine the volume and shape of extra spatial dimensions.
They are typically displaced from their minimum during inflation and thereby acquire a non-
zero energy density. The initial energy density of a modulus field with massm is ⇠ m

2
M

2
P
. It

starts oscillating about the minimum of its potential when the Hubble expansion rate drops
below m. The coherent oscillations of a massive scalar field behave like non-relativistic
particles of mass m [8].

In the case of many modulus fields, their initial energy density scales with their mass
as m

2. They start out oscillating one after another (from the heaviest to the lightest). It
can be shown that when all of the modulus fields have started oscillating, thus behaving
like matter, they have the same energy density. This implies an initially flat distribution
�0(m) = const. in the continuum limit. Moreover, the decay rate of a modulus field of mass
m is given by:
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�(m) '
m

3

2⇡M2
P

. (8)

Plugging these into the equation for radiation energy density in (6), and multiplying both
sides by a

4, we find:

a
4
⇢r =

�0a
3
0

M
2
P

Z
a(t)

Z
mmax

mmin

m
3
e

�m3t
M2

P dtdm. (9)

Making a change of variable u = m
3
t/M

2
P
gives:

a
4
⇢r = �0a

3
0

Z
a(t)

Z
m

max

mmin

M
2/3
P

t
�4/3

u
1/3

e
�u

dudt. (10)

We can write ⇢r in terms of the incomplete gamma functions:

⇢r =
�0a

3
0M

2/3
P

a4

Z
a(t)t�4/3[�(

4

3
,
m

3
max

t

M
2
P

)� �(
4

3
,
m

3
min

t

M
2
P

)]dt. (11)

In order to evaluate this integral, we must make some approximations. We can find an
analytic approximation for temperature within the time interval ��1

mmax
) ⌧ t��1

mmin
during

EMD, where we can set m3
max

t/M
2
P
! 1 in the first gamma function and m

3
min

t/M
2
P
! 0

in the second one. This leads to:

⇢r ⇠
�0a

3
0M

2/3
P

�(43)

a4

Z
a(t)t�4/3

dt, (12)

which, after using the relation a / t
2/3 during EMD, becomes:

⇢r ⇠
�0a

3
0M

2/3
P

�(43)t
1/3

a4
. (13)

We then arrive at the following scaling relation for temperature:

T / a
�7/8 (E.4), (14)

which is significantly di↵erent from that in the standard EMD scenario (4). The physical
interpretation of this di↵erence has to do with the fact that moduli heavier than ⇠ (tM2

P
)1/3

have already decayed at time t while the lighter ones are still around.
During the earlier stages of EMD when t ⌧ ��1

mmax
, the integral in (12) yields the relation

T / a
�3/8. This is the same as the standard scenario, which is expected since all of the

modulus fields are still present at such early times. At late times when t � ��1
mmin

, the
integral yields T / a

�1, which is also expected because all of moduli have already decayed
and T only changes because of Hubble expansion.

2. Primordial Black Holes

There are two main di↵erences between this case and that for modulus fields. First, a
PBH with mass m evaporates via Hawking radiation at a rate:
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�(m) =
⇡M

4
P

80m3
. (15)

Second, as pointed out in [12], a reasonable choice for the initial distribution function of
PBHs is �(m) / m

�1. Taking into account these di↵erences, and by repeating the same
steps as in the case of moduli, we derive the following relation between T and a during EMD
driven by PBHs when ��1

mmax
⌧ t ⌧ ��1

mmin
:

T / a
�3/4 (E.5) (16)

At early times t ⌧ ��1
mmax

and late times t � ��1
mmin

we find T / a
�3/8 and T

�1,
respectively, similar to the previous case.

VII. FIRST EXPLICIT EXAMPLE: A LARGE NUMBER OF MODULUS
FIELDS

We have have included 10,000 modulus fields uniformly distributed within the mass range
Mmin = 104GeV to Mmax = 108GeV with equal initial energy densities (to follow the
physically motivated behavior �(m) = const. in the continuum limit). The relevant system
of Boltzmann equations in this case is:

d⇢i

dt
+ 3H⇢i = ��i⇢i ,

d⇢r

dt
+ 4H⇢r =

NX

i=1

�i⇢i ,

da

dt
= aH ,

H =

 
⇢r +

P
N

i=1 ⇢i

3M2
P

!1/2

. (17)

Here ⇢i’s denote 10,000 modulus fields (N = 10, 000) with respective masses mi and decay
rates �i ' m

3
i
/2⇡M2

P
.

We have solved these equations in MatLab, using the the ode45 solver. The radiation
energy density ⇢r, total energy density in moduli

P
i
⇢i, and total energy density ⇢tot =

⇢r +
P

i
⇢i during EMD are shown in section nine figure five. The graph for temperature

distribution of the universe during this EMD scenario is shown in section nine figure six.
We can see three distinct phases in these figures. The first phase occurs for a ⇠ 1� 102

(where the scale factor a is normalized to its initial value a0). During this phase, which we
can call the “memory phase”, no appreciable amount of radiation is produced by by decay
of modulus fields and the initial radiation energy density is simply redshifted due to Hubble
expansion. As a result, T / a

�1 (E.3) that is clearly seen in the temperature graph. The
second phase corresponds to the range a ⇠ 102� 108. In this phase none of the moduli have
completely decayed yet, and hence the situation is similar to that in the standard EMD
scenario where T / a

�3/8 (E.2). The third phase corresponds to the range a ⇠ 108 � 1017,
during which some of the modulus fields have completely decayed while the rest are still
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present. In this phase we can use the analytical approximation discussed in the continuum
T / a

�7/8 (E.4), which is in good agreement with the slope seen in the temperature graph.
Finally, at a ⇠ 1017 a RD universe is established after all of the modulus fields have decayed
during which T / a

�1 (E. 3).

VIII. SECOND EXPLICIT EXAMPLE: A LARGE NUMBER OF PRIMORDIAL
BLACK HOLES

We have chosen 10,000 PBHs uniformly distributed over the mass range Mmin = 7 ⇤

1024GeV to Mmax = 2⇤1032GeV with the initial energy densities proportional to the inverse
of mass (to follow the physically motivated behavior �(m) / m

�1 in the continuum limit).
The system of Boltzmann equations in this case is the same as that in the previous case (17).
However, the evaporation rate �i of the PBH with mass mi is given by �i = ⇡M

4
P
/80m3

i
.

We have again solved these equations in MatLab, using ode45 solver. The graph for
various energy densities and for temperature during EMD are shown in section nine figures
seven and eight.

In this case, the initial radiation energy density is negligible, and hence there is no
“memory phase” at the beginning. We see that T / a

�3/8 (E. 2) for a ⇠ 100 � 103 and
a ⇠ 108 � 109, similar to the standard EMD, with an intervening phase were T / a

�1

(E. 3). This is di↵erent from the case of moduli and it is due to the fact that the lightest
PBH that evaporates first also carries the largest fraction of energy density. Its evaporation
therefore leads to injection of a significant amount of radiation that is then redshifted due
to Hubble expansion. In a sense, the phase corresponding to a ⇠ 103 � 109 may be called
the “memory phase” from evaporation of the lightest PBH. We expect this phase to become
shorter with increasing the number of PBHs and eventually vanish in the continuum limit.
For a ⇠ 109 � 1017, some of the PBHs have evaporated while the rest are still present. In
this phase we can use the analytical approximation in the continuum limit T / a

�3/4(E.5),
see Eq. (P.5). Finally, at a ⇠ 1017 the entire population of PBHs have evaporated and the
universe enters a RD phase during which T / a

�1 (E. 3).

IX. CONCLUSIONS AND FUTURE WORK

Non-standard thermal histories of the early universe are motivated on theoretical grounds
and typically involve an epoch of EMD. In this work we have generalized the standard
picture of EMD that involves only one species behaving like non-relativistic matter. We
have studied two explicit examples that arise in realistic particle physics models of the early
universe where EMD is driven by a population of modulus fields and PBHs respectively.

We considered the continuum limit of both cases and obtained analytical approximations
for temperature of the universe during the generalized EMD. Our novel result is that for
long periods of time temperature decreases significantly di↵erently from that in the standard
scenario. We confirmed our analytical results by numerically solving the relevant system of
Boltzmann equations for a large number of modulus fields and PBHs.

Our results have important implications for production of DM in the early universe.
It is known that the standard EMD scenario significantly enlarges the allowed regions of
parameter space that yield the observed DM abundance [9]. It has been recently shown
that a simple extension of the standard scenario that involves a second field opens up large
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parts of the parameter space [13]. We can therefore expect that entirely new regions of the
parameter space become viable in the generalized EMD scenario. To tackle this problem, one
must solve equations for production of DM from processes in the thermal bath along with
the system of Boltzmann equation that govern evolution of radiation, which is in general
very involved. However, the importance of the origin of DM abundance for cosmology and
particle physics warrants a detailed investigation along this direction in future.
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X. FIGURES
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FIG. 1: Graph of radiation and matter energy densities for one field scenario. The x-axis is the
scale factor a and is normalized to unit-less. The y-axis is the energy density and is measured
in GeV. The blue is the matter field and the red is the radiation field. The initial matter energy
density is ⇢i = 3(MP ⇤H0)2(GeV ), the decay rate is �1

Ho
= 10�9, and the initial radiation energy

density is ⇢r = 10�10(GeV ).
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FIG. 2: Graph of temperature distribution of early universe for the one field scenario. The x-axis
is the scale factor a and is normalized to unit-less. The y-axis is the temperature measured in
Kelvin.
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FIG. 3: Graph of radiation and matter energy densities for two field scenario. The x-axis is the scale
factor a and is normalized to unit-less. The y-axis is the energy density and is measured in GeV. The
blue and red are the matter fields; and the yellow is the radiation field. The initial matter energy
density is ⇢i =

3(MP ⇤H0)2

2 (GeV ), the decay rates are �1
Ho

= 10�9(sec�1) and �2
Ho

= 10�6(GeV ), and
the initial radiation energy density is ⇢r = 10�10(GeV ).
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FIG. 4: Graph of temperature distribution of early universe for the two field scenario. The x-axis
is the scale factor a and is normalized to unit-less. The y-axis is the temperature measured in
Kelvin.
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FIG. 5: Graph of radiation and matter energy densities for the N modulus fields scenario. The
x-axis is the scale factor a and is normalized to unit-less. The y-axis is the energy density and
is measured in GeV. The blue is the radiation field, the magenta is the total sum of the matter
energy densities, and the other colors are the individual matter fields . The initial matter energy
density is ⇢i =

3(MP ⇤H0)2

N
(GeV ), the decay rates are �i =

m
3

2⇡M2
P
(GeV ), and the initial radiation

energy density is ⇢r = 10�10(GeV ). The memory phase follows T / a
�1 (E.3), the second phase

follows T / a
�3/8 (E.2), the third phase follows T / a

�7/8 (E.4), and the fourth phase follows
T / a

�1 (E. 3).
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FIG. 6: Graph of temperature distribution of early universe for the N modulus field scenario. The
x-axis is the scale factor a and is normalized to unit-less. The y-axis is the temperature measured
in Kelvin. The memory phase follows T / a

�1 (E.3), the second phase follows T / a
�3/8 (E.2),

the third phase follows T / a
�7/8 (E.4), and the fourth phase follows T / a

�1 (E. 3).
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FIG. 7: Graph of radiation and matter energy densities for the N primordial black hole scenario.
The x-axis is the scale factor a and is normalized to unit-less. The y-axis is the energy density and
is measured in GeV. The blue is the radiation field and the other colors are the individual matter
fields . The initial matter energy density is ⇢i = 3(MP ⇤H0)2

m
dm(GeV ) where dm is the step size

for the mass distribution, the decay rates are �i =
⇡M

3
P

80m4 (sec�1), and the initial radiation energy
density is ⇢r = 10�10(GeV ). The first phase follows T / a

�3/8 (E. 2), the intervening phase follows
T / a

�1 (E. 3), the second phase follows T / a
�3/4 (E.5), and the third phase follows T / a

�1

(E. 3).
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FIG. 8: Graph of temperature distribution of early universe for the N primordial black hole scenario.
The x-axis is the scale factor a and is normalized to unit-less. The y-axis is the temperature
measured in Kelvin. The first phase follows T / a

�3/8 (E. 2), the intervening phase follows
T / a

�1 (E. 3), the second phase follows T / a
�3/4 (E.5), and the third phase follows T / a

�1

(E. 3).


