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Dark matter presents itself as one of the greatest mysteries to modern physics. The
Weakly Interacting Massive Particle (WIMP) has been deemed a strong candidate for
the makeup of this mysterious substance. Direct Detection of WIMPs involve the detec-
tion of nuclear recoils in Time Projection Chambers (TPCs) to determine the direction of
incoming WIMP flux. TPCs fall victim to electron diffusion, making directionality diffi-
cult to determine at low recoil energies. In this thesis, we make use of the effect of CS2

to reduce diffusion in the detector. We were able to reduce the width of alpha particle
tracks by 75% while maintaining high light yield. From this research we determined the
ideal ratio of CS2 to CF4 in the vessel to be about 3:150 Torr, or 2%. The ability for CS2

to diminish diffusion is extremely powerful; the directionality of lower energy recoils
can be better determined. With such a strong tool, we are one step closer to the direct
detection of dark matter.

http://www.unm.edu
http://physics.unm.edu/pandaweb/people/person.php?personID=24
http://physics.unm.edu


ii

Acknowledgements
I would like to thank Dr. Dinesh Loomba for his strong mentorship throughout the
process of my work. His passion for the subject, his patience, and his guidance enabled
my success throughout the year. I am very grateful to have had the opportunity to
participate in such fascinating research.

I would also like to the Undergraduate Committee for selecting my research for
the Raeburn Fund for Undergraduate Research. Similarly, I would like to thank the
Undergraduate Committee for the review my thesis.



iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 A Brief Introduction to Dark Matter . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The WIMP and Motivation for Directional Dark Matter Detection . . . . . 2
1.3 Our Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Diffusion in the Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Alpha Tracks 6
2.1 Why Use α Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Initial Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Straight Segments and the Hough Transform . . . . . . . . . . . . . 8
2.2.3 Rotation and Width Calculation . . . . . . . . . . . . . . . . . . . . 10

2.3 Results for Diffusion from α Widths . . . . . . . . . . . . . . . . . . . . . . 11

3 55Fe and X-Ray Tracks 14
3.1 Why Use 55Fe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Results for Light Loss with CS2 . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Summary: the Ideal CS2 Concentration . . . . . . . . . . . . . . . . . . . . 17

4 Conclusions and Further Research 18

A Mathematics of the Hough Transform 19

B Matlab Codes 21
B.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.2 Alpha Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
B.3 55Fe Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography 37



1

Chapter 1

Introduction

1.1 A Brief Introduction to Dark Matter

The idea that there exists a type of matter completely invisible to the human eye has long
been considered a fact of the Universe. Nineteenth century astronomers speculated the
existence of ”dark nebulae” and ”dark stars”, both of which carried mass and took up
space but lacked the ability to emit light (Bertone and Hooper, 2016). This idea carried
over into the work of Lord Kelvin and Jan Oort, who began making measurements of
stellar velocity dispersions within the Milky Way in the early twentieth century. They
concluded that the total mass of some arbitrary ”dark matter”, while not inconsequen-
tial, was probably much less than that of visible matter.

Dark matter did not begin building traction until the works of Fritz Zwicky in 1933.
Zwicky, who studied the redshift of various galactic clusters, stumbled upon a kine-
matic phenomenon in the Coma cluster: the velocities of several galaxies were largely
dissimilar, sometime differing by 1000 km/s (van den Bergh, 1999). These unexpect-
edly large velocity dispersions were not possible without the existence of especially
high masses within the cluster. Zwicky set off to determine the observable mass of the
system by multiplying the average mass of a galaxy (then estimated to be about 106 M�)
with the number of observed galaxies (Bertone and Hooper, 2016). His estimation indi-
cated that the velocity dispersion within this particular cluster should not reach much
higher than 80 km/s. The observational evidence that disagreed with theoretical predic-
tions led to Zwicky’s conclusion that, in contrast with Kelvin and Oort, dark matter is
present in the Universe in much greater amounts than luminous matter (Zwicky, 1933).

Fritz Zwicky is often described as the pioneer of dark matter, but some of dark mat-
ter’s most compelling evidence came in the form of galactic rotation curves. In 1970,
Vera Rubin and Kent Ford made measurements of, with high degrees of certainty, the
mass and rotational velocity of the Andromeda Galaxy (or M31) up to a radius of 24
kpc (Rubin and Ford, 1970). This led to a surprising result: the mass density due to
luminous matter decreased at high radii, but the velocity did not; there is likely some
additional form of matter in abundance that was contributing to the total gravitational
potential, and thereby rotational velocity, of the galaxy.

Cluster velocity dispersions and galactic rotation curves confirmed that there was a
lot of dark matter in the Universe, but until the era of precision cosmology the specific
amount was poorly constrained. This changed in 2010. After 9 years of taking data,
the Wilkinson Microwave Anisotropy Probe (WMAP) satellite-based experiment deter-
mined that the geometry of the Universe is flat (Komatsu, 2014). This fact tells us that
the total energy density of the Universe is equal to its critical value, but also gives us
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an accurate value of the baryonic and dark matter densities in the Universe. In fact, it
was determined that baryonic matter makes up about 4.6 percent of the contents of the
Universe, while dark matter makes up about 24 percent. The remainder consists of 71.6
percent dark energy (Hinshaw et al., 2013).

Numerous theories exist today regarding the actual make-up of dark matter, how-
ever a few of its specific qualities are largely widespread: it should have mass, be neu-
trally charged, and lack any capability to interact electromagnetically. One of the lead-
ing candidates for dark matter is the Weakly Interacting Massive Particle, or, the WIMP.

1.2 The WIMP and Motivation for Directional Dark Matter De-
tection

As the name suggests, the WIMP is theorized to couple with ordinary matter through
the weak interaction. If true, dark matter can be observed via its rare interactions with
atoms in a detector.

There are three ways that have been proposed to detect the WIMP (Mount, 2017).
First, using particle colliders to produce WIMPS at high energies. Here, WIMPS would
show themselves as missing energy and momenta from the collision. Second, through
Indirect Detection (ID) methods that look for WIMP-WIMP annihilation in locations
in which dark matter tends to concentrate, such as the galactic center and in the Sun.
These ID techniques assume the WIMP is its own antiparticle (a Majorana particle) and
will have identifiable secondary particles, such as photons and neutrinos, produced in
their annihilation. Finally, Direct Detection (DD) techniques search for the interaction
between WIMPS and baryonic matter. This weak interaction produces traceable recoils
in the atomic nuclei of a detector.

Direction detection techniques provide one very specific advantage over the others:
nuclear recoils should have a directional signature attached to them. The Sun travels
through the Milky Way with a velocity of about 230 km/s in the direction of the con-
stellation Cygnus (Lewin and Smith, 1996). Galaxy formation theories and simulations
indicate that dark matter does not co-rotate with the stars and gas in the galaxy. In
this scenario the solar motion through the dark matter halo will result in a dark matter
”wind” from the direction of Cygnus. Thus, if we can detect the tracks of nuclear recoils
resulting from WIMP interactions, they should be directed opposite to Cygnus. Such a
detection would provide an unambiguous signature for a WIMP discovery.

The concept of a directional WIMP wind is the motivation behind several DD exper-
iments. In particular, the Directional Recoil Identification From Tracks (DRIFT) experi-
ment makes use of a Time Projection Chamber (TPC) to search for and study the direc-
tional signature resulting from dark matter-based nuclear recoils (Daw, 2012). DRIFT is
one of a number of directional dark matter experiments that use the gaseous TPC tech-
nology. The work described in this thesis also uses a TPC but, unlike DRIFT, it uses a
scintillating gas (CF4) and a CCD readout to detect recoil tracks.

1.3 Our Detector

A TPC is able to make 3D reconstructions of nuclear recoil tracks, which provides the
ability to determine the directionality of any given recoil. To make measurements of
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FIGURE 1.1: A schematic diagram of the prototype TPC. Not to scale.
(Loomba, 2013)

nuclear recoils of various origin, we have made use of a prototype TPC developed by
Nguyen Phan, a former graduate student at the University of New Mexico (Phan et al.,
2016).

This detector resides in a cylindrical aluminum vacuum vessel 16 cm tall and 29
cm in diameter. The vessel was filled with 150 Torr of carbon tetrafluoride (CF4). The
detector, a representation of which can be seen in Figure 1.1, contains a cathode mesh,
an anode wire grid, and three Gas Electron Multipliers (GEMs). The GEMs, which were
designed and produced at CERN, are 7 cm x 7 cm and are made of 50 µm thick kapton
foil that has 5 microns of copper cladding on both sides. Each GEM is covered in 50 µm
holes, with a pitch of 140 µm. Above the detector is a charged-coupled device (CCD)
camera with a 1024 × 1024 pixel sensor array. Attached to the CCD is a 58 mm f/1.2
lens on a 20 mm extension tube. A Polonium-210 (210Po) and Iron-55 (55Fe) source were
placed inside the detector, each of which could be turned on or off on demand.

To fully understand the importance of the detector’s components, it is first impor-
tant to understand the function of a TPC. As an energetic particle enters the detector, it
interacts and ionizes atoms along a track. The electrons emitted in this interaction are
carried upwards towards the GEMs by an electric field produced between the cathode
mesh and GEMs. Upon reaching the GEMs, the electrons undergo a massive stage of
multiplication. The electrons are guided into the small holes in the GEMs, where an
especially strong electric field ionizes the gas in the detector even further. This process,
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known as electron avalanche, occurs in each of the three GEMs. The term ”gas gain” is
used to describe the level of electron multiplication that occurs during the avalanche.
In our detector we are able to reach an effective gas gain of over 105, meaning that for
every one electron that reaches the first GEM, over 10,000 electrons leave the third.

With nuclear recoils of higher energy, the directionality is easy to discern: meaning
the tracks are well resolved, clearly indicating the recoil direction. However, as the
energy decreases, these tracks become short and diffusion limited, so directionality is
lost; they appear as blobs rather than lines (see Figure 1.2).

FIGURE 1.2: Left: a nuclear recoil track with a recoil energy of 302.4 keV.
Here, directionality can be determined from the linear shape of the track.
Right: a nuclear recoil track of 10 keV. The energy of this track is too low

to easily determine directionality. (Loomba, 2013)

The gas in the chamber, CF4, was originally chosen for preliminary testing due to
its high capacity for scintillation. During the avalanche both electrons and scintillation
photons are produced, which allows us to optically image the track with a lens and CCD
camera. However, ionization that forms the track diffuses as it drifts along the electric
field towards the anode. In the next section we discuss diffusion and how it can be
minimized with appropriate gas mixtures. This is one of the key subjects of this thesis.

1.4 Diffusion in the Detector

One solution to the electron diffusion problem is to add an electronegative gas, such as
CS2, into the detector (Martoff et al., 2000). CS2 has the benefit of having high electron
affinity (Phan et al., 2016). CS2 molecules capture the electrons initially produced by the
recoiling particle (atom or electron), forming negative ions that drift towards the GEMs.
The large mass (in comparison to electrons) of these molecules, allows for much lower
drift velocity and also results in much lower diffusion, which occurs in the thermal
regime. However, CS2 lacks CF4’s strong scintillating properties.

Phan showed (Phan et al., 2016) that adding small quantities of CS2 to CF4 could
provide the low diffusion benefits of CS2 without a large loss of scintillation. The goal of
this thesis is to quantify this by measuring the reduction in both diffusion and scintilla-
tion light as a function of the partial pressure of CS2 in 150 Torr of CF4. The experiments,
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described below, will add CS2 in increments of about 0.5 Torr and make measurements
of alpha particle and low energy 55Fe tracks to measure diffusion and scintillation light.
We will show that we can achieve low diffusion, approaching the minimum thermal
limit, without a too large loss of light.
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Chapter 2

Alpha Tracks

2.1 Why Use α Tracks

The 210Po source decays to emit an alpha (α) particle. We have chosen α tracks to mea-
sure diffusion and its reduction as a function of the CS2 fraction in the dominant CF4 gas.
α particles rarely generate nuclear recoils in the detector. Instead they travel in mostly
straight paths, strongly ionizing the gas and therby leaving a trail of ion-electron pairs.
The tracks produced are long, straight, and bright (see 2.1). The intrinsic track should
be very narrow, which broadens considerably due to diffusion when the electrons drift
to the GEMs. Thus, measuring this width provides an excellent estimate of diffusion.

FIGURE 2.1: Three distinct α tracks observed in the prototype TPC. The
color chart shows the high signal-to-noise of the particles. Here the qual-

ities of being long, straight, and bright are apparent.

One key trait of α tracks is their uniform widths. Lengths vary depending on a
variety of variables: The 210Po source emits α particles in all directions, therefore we
use a colimator to narrow the angular spread. Nevertheless, αs will have a distribution
in direction and lengths as observed in our detector. Similarly, the loss of α particle
energy in the detector is not constant due to energy loss fluctuations and variations in
direction; particles with higher initial energy loss will be produce shorter tracks than
those with smaller initial loss. Despite this, track widths remain fairly consistent.

This fact can be manipulated to quantify diffusion as a function of CS2 fraction.
Our procedure was to add CS2 in increments of about 0.5 Torr to about 150 Torr of CF4.
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Measurements of diffusion with α tracks and light output with 55Fe x-rays (next Section)
were undertaken for each gas mixture. This will also allow us to see the moment of
diminishing returns in the detector. We suspect that, at a certain ratio of CS2 and CF4,
the low diffusion advantage of CS2 will no longer increase with any addition of the gas.

Widths of several hundreds of tracks at each CS2 increment will need to be acquired
to achieve statistically significant results. Similarly, widths must not be calculated by
eye as this can lead to bias and an overall incorrect result. The following section de-
scribes an algorithm that can correctly calculate a large volume of track widths without
any human bias.

2.2 The Algorithm

2.2.1 Initial Identification

I have developed an algorithm that correctly and efficiently analyzes a large data set of
α tracks. This algorithm isolates particle tracks and measures their widths, the process
of which is described in detail in this section.

Recall that the CCD camera is comprised of a 1024 x 1024 pixel sensor array, therefore
a standard 1x1 pixel binning image will similarly be made up of 1024 x 1024 pixels.
To improve signal-to-noise in the image, the image can be binned with a higher pixel
number. ”Binning” is the process of combining the charge of adjacent pixels, improving
signal-to-noise but reducing resolution. A 4x4 binning image implies every square of
16 pixels is reduced to 1 pixel in the final image. Similarly, in an image of 1x1 binning,
each pixel in the image corresponds to 29 microns of real space. Therefore each pixel in
a 4x4 binned image corresponds to 116 microns.

We use 2x2 binned images to maintain high resolution while gaining the additional
benefit of improved signal-to-noise. All images were imaged with a 1 second exposure
time. Figure 2.2 shows a 2x2 image of α tracks after the image has been calibrated (see
Appendix B.1).

Track identification is a key aspect to the algorithm. First, every pixel value is com-
pared to the average value of the background. Pixels whose value are 3σ above the mean
are chosen and exported to a second image (see Figure 2.3). This second, binary image is
composed entirely of 1s and 0s: high intensity pixels and the background, respectively.

It is important to note that the binary image contains all high intensity pixels of the
original image. Cosmic rays often create high intensity noise within CCDs. Free stream-
ing cosmic particles pass directly through the silicon detector of the CCD, producing
singular bright pixels within an image. Charge from these bright spots can spill over
into adjacent pixels in the CCD, creating small trackless regions of unusually high en-
ergy (Howell, 2000). As such, the algorithm must be able to search for isolated, high
intensity pixels due to cosmic rays.

The algorithm makes use of the Matlab function bwconncomp, which selects and
records every group of adjacent 1s in the binary image. After looking at the total pixel
number within each connected region, the algorithm cuts any ”track” of less than a spe-
cific size. Once the actual tracks have been determined we can call upon each individual
track stored by bwconncomp, allowing us to analyze multiple tracks per image. The al-
gorithm cycles through every legitimate track, carrying out individual analysis for each
one.
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FIGURE 2.2: A 2x2
binned image with 4
distinct α tracks. The
tracks stand out clearly
from the background

noise.

FIGURE 2.3: A binary
replication of Figure
2.2. Here, all pixels 3σ
above the background
are given a value of 1,
while others remain at 0.

2.2.2 Straight Segments and the Hough Transform

To obtain a significant measurement of the width of every α track, the algorithm must be
able to determine the width over a straight segment of the track. This, however, raises
the additional issue of requiring the track to be completely straight over the selected
track segment (see Figure 2.4). The solution to this problem is found in the manipulation
of the Hough Transform: an image analysis technique for detecting lines in pictures. A
detailed explanation of the Hough Transform can be found in Appendix A

After selecting an individual track (see Figure 2.4), the algorithm bins the new binary
image by a factor of 6 in the x direction. This post-imaging binning combines the pixel
value of every 6 column-adjacent pixels. After following this process for every row, we
are left with a track of equal length but with a width of only 4 or 5 pixels (see Figure
2.5).

Once the image has been binned in this way, the Hough Transform can be applied to
find the two longest line segments detected in the track. The two detected lines follow
the two longest portions of the track: the straight top segment, and the straight bottom
segment that follows the curve. The transform outputs the x and y coordinates of the
start and endpoints of each line. With these coordinates we can determine the equation
of each line, and therefore find the point where the two lines intersect (see Figure 2.6).

The intersection coordinates of the two Hough lines could not be more valuable.
The curvature of the track begins just below the y value of this point. We can carry the
y value back to the original image and set all pixel values below this point to 0, leaving
us with a completely straight segment of track (see Figure 2.7)
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FIGURE 2.4: A single α
track from Figure 2.2 in
its binary representation.
A curve is easily visible

at its lowest point.

FIGURE 2.5: The same
track with 6 times X-
binning. The curve is
still observable at the

base of the track.

FIGURE 2.6: The Hough
lines and their intersec-

tion point (in red).

FIGURE 2.7: The original
individual binary track
with a line drawn over
the y location found in
the Hough Transform.
All pixel values below
this line will be set to 0.
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2.2.3 Rotation and Width Calculation

Once a straight segment has been selected, the algorithm can begin to calculate the
width of the track. To do this, the original image (Fig. 2.2) is rotated so the track is
aligned with the y-axis. Image rotation is carried out using Matlab’s imrotate function,
which requires the angle by which the image should be rotated. To determine this angle,
the algorithm finds the center (in (x,y) coordinates) of the top and bottom of the track.
The total distance, as well as the difference in x-values, can then be calculated. Using
basic trigonometry in conjunction with this information yields the angle needed to align
the track with the y-axis. A better rotation method is the Radon Transform, which will
be used in future iterations of this work (Kolouri, Park, and Rohde, 2016).

Upon rotation of the image, pixel values surrounding the track are removed, isolat-
ing the pixels belonging to the track (see Figure 2.8). With the track correctly rotated,
the algorithm is ready to calculate its width. The pixels in the track are projected onto
the x-axis. Pixels in every column are added so that we are left with a one dimensional
vector of pixel intensities. The algorithm then plots this data against the x-axis. Due to
the diffusion of the α tracks, the projection has a high intensity in the center that tapers
off towards its edge; the plot takes the shape of a Gaussian distribution. The algorithm
fits a Gaussian curve to this data (see Figure 2.9) and extracts the standard deviation (σ).
Using σ, the full width at half maximum (FWHM) of the distribution is calculated. It is
the FWHM of the Gaussian distribution that we use to quantify the diffusion of the α
particle tracks.

FIGURE 2.8: The straight
segment of the track, ro-
tated to be aligned with
the y axis. All other pixel
data has been removed.

FIGURE 2.9: Gaussian
distribution fit to the
projected intensity. The
FWHM extracted from
this fit is what we use to

characterize diffusion.

This entire process is repeated until every α track in every image has been analyzed,
with the FWHM calculated for each track. The algorithm can be found in Appendix B.2.
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2.3 Results for Diffusion from α Widths

Prior to any addition of CS2, the algorithm ran through 300 images of α tracks allowing
for the calculation of roughly 300 FWHMs (some images had 3 or 4 tracks, others had
none). The resulting distribution is seen in Figure 2.10, whose median was calculated to
be FWHM0 = 20.16 pixels. One pixel corresponds to 29 microns, implying FWHM0 =
1169.3 microns.

FIGURE 2.10: The FWHM distribution for 2x2 binning with pure CF4 (ie.
no CS2.)

After initial calculations we incrementally added CS2 into the prototype TPC. The
effect of the CS2 was immediate and very apparent; track width decreased immensely
(see Figure 2.11 and Figure 2.12), even with just 0.5 Torr of CS2. It is important to note
that the pressure withing the detector increased as CS2 was added, meaning no CF4 was
removed to maintain constant pressure.

This procedure was repeated 10 additional times, each with increasing increments
of CS2 (see Table 2.1). The α widths, and therefore diffusion, no longer appeared to
decrease after about 3.0 Torr of CS2. However, we cannot rule out that this is due to
pixelization or the GEM hole pitch. Decreased width is limited by the resolution of the
CCD. With 2x2 binning, no track can be observed to be smaller than 2 pixels; there is a
”binning floor” in which the CCD camera interferes with our ability to observe increas-
ing CS2 benefit. This issue can temporarily be solved by imaging with 1x1 binning to
improve resolution, which will be attempted in further iterations of this work.

It is important to note that the process of adding precise quantities CS2 into the vessel
was not without error. CS2 can be absorbed by plastic components in the detector. As
such, additional CS2 was added to ensure the final outcome matched the increment
values stated in the table above.

Despite the restraints due to absorption and resolution, one thing is for certain: CS2

is clearly effective for reducing diffusion in TPCs. However, as stated earlier it also
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FIGURE 2.11: 2x2 bin-
ning image of α tracks in
a mixture of 150 Torr CF4

and 0.5 Torr CS2. Track
width is drastically re-
duced compared to 2.2.

FIGURE 2.12: α track in
mixture of 150 Torr CF4

and 5.9 Torr CS2. Here,
tracks are even thinner.
Improved resolution will

likely improve results.

Torr of CS2 Median FWHM (µm) σ

0 1169.3 497.6
0.5 612.48 260.6
1.2 407.74 173.5
1.8 374.1 159.2
2.3 356.7 151.8
2.9 338.14 143.9
3.5 329.44 140.2
4.1 323.64 137.7
4.7 326.54 140
5.4 323.06 137.5
5.9 328.28 139.7

TABLE 2.1: FWHM and σ of α particle tracks calculated using 11 incre-
ments of CS2.
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lowers the scintillation light produced in CF4. To find the ideal ratio of CS2 to CF4 it is
now important to determine the scintillation light yield for each increment of added CS2

using the Iron-55 (55Fe) calibration source, which produces 5.9 keV x-rays. The electrons
produced in the conversion of these x-rays in the gas leave short tracks that are detected
similarly to the alpha tracks described above. A spectrum of intensities of 55Fe tracks is
used to characterize the light loss due to CS2, as described in the next chapter.
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Chapter 3

55Fe and X-Ray Tracks

3.1 Why Use 55Fe
55Fe is often used in calibration for scintillation detectors due to its near-exclusive emis-
sion of constant energy x-rays (Schötzig, 2000). K-alpha x-rays, which are a result of
electron capture within the 55Fe nucleus, are emitted with an energy of 5.89 keV at high
frequency. If placed into our prototype TPC, these x-rays are of high enough energy to
produce ionization tracks (see Figure 3.1).

FIGURE 3.1: 4x4 binning image of 5.89 keV K-alpha x-ray tracks produced
by an 55Fe source. They are small and dim, but their intensities are con-

stant.

Due to their low energy and low energy loss, 55Fe tracks are not nearly as bright
as α particle tracks. However, creating x-ray energy spectra at various increments of
CS2 provides a strong method to determine decreased light yield as a function of CS2

percentage, as the peak of these spectra will always correspond to 5.89 keV. Intensities
of a large number of tracks must be acquired to produce such spectra. As such, a sec-
ond algorithm was written that detects 55Fe tracks and produces a spectrum of their
intensities. It is this spectrum that is used to quantify the light loss due to CS2.

3.2 The Algorithm

I have developed a second algorithm that, much like the first, begins by creating a bi-
nary image of all x-ray tracks in the image. Pixels whose intensity surpasses a certain
multiple of the standard deviation of the background are selected as potential tracks.
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In the case of the x-ray track images this value is lower than that of the α tracks, as the
dimmer x-ray tracks are closer in intensity to the background: For 16x16 binning, I chose
that a pixel must have an intensity of 1.5σ above the background to be a candidate for a
track. An example of this binary image can be seen in Figure 3.2. A low σ value insures
the entire track is selected.

Signal-to-noise of these tracks are low enough to allow many pixels with no track
affiliation into the binary image. Matlab’s bwconncomp function is used, once again, to
record connected groups of pixels; any collection fewer than 7 pixels are discarded with
the remainder characterized as tracks. All remaining pixel groups are cycled through
individually (see Figure 3.3).

FIGURE 3.2: A 16x16
binary image of every
pixel 1.4σ above the

background average.

FIGURE 3.3: Selection of
an individual track al-
lowing for further analy-

sis.

Once a track has been selected, the intensity values of the corresponding pixels in
the original image are summed, giving us the total intensity of the x-ray track. This
process is repeated for every track in the image, and every image taken for a particular
increment of CS2.

3.3 Results for Light Loss with CS2

After determining all individual track intensities for 0 CS2, an energy spectrum can be
created. This is merely a histogram of the aforementioned intensities (see Figure 3.4).
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FIGURE 3.4: Energy spectrum of 5.9 keV x-rays at 16 by 16 binning. A
peak lies clearly around 3170 ADUs. The high number of low energy
tracks are a result of non-track pixels that escaped elimination. The sec-

ond peak around 6200 ADUs is a direct result of overlapping tracks.

This process was repeated with increasing fractions of CS2, in increments of about
0.5 Torr. As signal-to-noise is more important than resolution, 16 by 16 binning was
chosen to guarantee x-ray tracks would still be visible at high levels of the gas. Peak
intensities were recorded at each CS2 increment resulting in the following data:

Torr of CS2 Peak Intensity (ADUs)
0 3175

0.5 1115
1.2 995
1.8 895
2.3 625
2.9 595
3.5 495
4.1 485
4.7 445
5.4 385
5.9 365

TABLE 3.1: Peak intensities (in ADUs) determined at every increment of
CS2.



Chapter 3. 55Fe and X-Ray Tracks 17

3.4 Summary: the Ideal CS2 Concentration

The decreasing trend in light yield was apparent in the 55Fe data. This information can
can be coupled with the data acquired of α track widths to find the ideal ratio of CF4

and CS2 (see Figure 3.5).

FIGURE 3.5: Here, the remarkable effect of CS2 is easy to see, while the
constant decrease in light yield is similarly visible. The ideal amount of
CS2 occurs between 3-4 Torr, after which the α width appears to reach a

minimum.

From Figure 3.5 it is easy to see that the decreased width of α tracks plateaus around
a σ of 150 microns. However, light yield continues to decrease steadily. The α plateau
occurs around 3 Torr of CS2. It can therefore be concluded, assuming that this plateau is
truly the point of diminishing returns and not a result of poor resolution, that the ideal
ratio of CS2 to CF4 is approximately 3:150, or 2%.
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Chapter 4

Conclusions and Further Research

Changes can be made to improve the results of this thesis. As stated previously, 1x1
binning images should be taken at all increments of CS2. This will show a further de-
crease in width assuming pixelization from the 2x2 images resulted in a hard limit of
width reduction. Light yield was not an apparent issue at 2% CS2, so increasing the
ratio above 2% is certainly an option. Similarly, the use of a radon transform to rotate
the images will remove some unfortunate blemishes created in the images due to naive
image rotation techniques. This can show, more accurately, the true effect of the CS2.

An important aspect of CS2 is its toxicity. The National Center for Biotechnology
Information’s database on chemical molecules PubChem lists CS2 as a dangerous chem-
ical. The chemical is not only flammable, but also a powerful neurotoxin and can result
in reproductive toxicity. These dangers have kept the gas from widespread use. Fortu-
nately, there exists a second electronegative gas with nearly identical properties to CS2

called sulfur hexaflouride (SF6). SF6 has the added benefit of being entirely safe breath,
and therefore lack any safety concerns in a laboratory setting. This strong replacement
requires the same analysis as done in this thesis, but similar, or identical, results are
expected.

A roughly 75% reduction in width increase due to diffusion is remarkable; clearly
CS2 is a powerful tool to combat diffusion within TPCs. Although the advantages of
CS2 are obvious, its true potential has yet to be determined. Direct dark matter detection
experiments must be able to resolve nuclear recoil tracks of very low energies. CS2 will
vastly improve upon the lower limit of recoil energies set by pure CF4 detectors. In
future iterations of this work we will determine the lowest energy of nuclear recoil in
which directionality can be determined using the new ideal ratio of 2% CS2. Given the
success of our results thus far, we expect that value to drop significantly, bringing us
one step closer to detecting the WIMP.
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Appendix A

Mathematics of the Hough
Transform

The Hough Transform is a powerful line detection tool in modern image analysis. The
following describes the mathematic process of this transform. In Cartesian coordinates,
a line has the equation:

y = mx+ b (A.1)

where m and b are the parameters giving slope and y-intercept, respectively. Points on
the line (xi,yi) similarly follow the equation:

yi = mxi + b (A.2)

Every single point on the line is related to every other point by this equation; each (xi,yi)
are related by the same m and b values.Therefore, the Cartesian equation of a line can
be mapped onto a new, slope-intercept coordinate system. Here, every line follows the
equation:

b = m(−x) + y (A.3)

The points (xi,yi) can be plotted as lines in the this new coordinate system. These new
lines will all intersect at a single point (m,b), which are the slope and y-intercept of the
original line. This idea (shown in Figure A.1) forms the basis of the Hough Transform.

FIGURE A.1: (a) shows several points (xi,yi). Together, these points form
a line. (b) shows the lines created using Equation A.3 intersecting at one
point: (m,b). (c) shows the line created using the slope and intercept (m,b)

found in (b)
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This method runs into issues when the slope nears or becomes infinity (vertical
lines). To solve this issue, the lines are instead written in trigonometric form:

x cos θ + y sin θ = ρ (A.4)

Where ρ is the distance from some origin and θ is the angle between the y axis and ~ρ (as
seen in Figure A.2).

FIGURE A.2: A line parameterized by ρ and θ.

The Hough Transform takes a binary image and plots every illuminated ”1” pixel as
a curve in the new parameter space. A line in the image is then detected by looking at
(ρ,θ) point in which the highest number of intersections occur.

For further review of the Hough Transform, see Illingworth and Kittler, 1988 and
Shehata Hassanein et al., 2015.
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Appendix B

Matlab Codes

B.1 Calibration

Correct calibration of an image is the key to strong image analysis. Without it, data is
flawed and end results will be incorrect. Fortunately, the general process for correct
image calibration is widely understood: removal of the pixel value pedestal using dark
frames, and correction of optical anomalies using flat frames. However, more intricate
methodology must be put in place to achieve best calibration.

The following algorithm makes a master dark frame using a combination of multiple
individual frames. This algorithm also records any bad pixels found in any of the dark
frames. A ”bad pixel” refers a pixel who has higher than average pedestal value. These
are likely issues with the CCD itself and must be accounted for in every image taken
(even data frames).

The master dark frame is subtracted from every light image used for analysis. No
flat frame was created for this thesis, but would likely improve calibration.

1 ChooseBin=input('Enter # for #x# binning images:\n');

2 Num_C=input('Enter the number of Dark Images desired:\n');

3 DarkCal=cell(1,Num_C);

4
5 if ChooseBin==2

6 for ii = 1:Num_C

7 DarkCal{ii}=fitsread(sprintf('alpha−%03ddark.fit',ii));
8 end

9 elseif ChooseBin==4

10 for ii = 1:Num_C

11 DarkCal{ii}=fitsread(sprintf('alpha−%03ddark2.fit',ii));
12 end

13 elseif ChooseBin==6

14 for ii = 1:Num_C

15 DarkCal{ii}=fitsread(sprintf('alpha−%03ddark3.fit',ii));
16 end

17 else

18 fprintf('That is not an acceptable binning number! Try Again!\n')

19 end

20
21 %−−−−−−−−−−−−−−−−−−−−−−−−−−Form Master Dark−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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22 [N_x, N_y] = size(DarkCal{1});

23 HH=6;

24 D_master_sum=zeros(N_x,N_y);

25 for ii=1:Num_C

26 D_master_sum=D_master_sum+DarkCal{ii};

27 end

28 D_master=D_master_sum./Num_C;

29
30 D_STD=std(D_master(:));

31 D_Mean=median(D_master(:));

32 D_alpha=1;

33 B_pix=zeros(N_x,N_y);

34
35 % The following two loops look for pixels in each individual callibration

image to

36 % verify the presence of bad pixels, then removes them/notes their

37 % location.

38 for ii=1:N_x

39 for jj=1:N_y

40 if D_master(ii,jj)>D_Mean+D_alpha*D_STD

41 B_pix(ii,jj)=D_master(ii,jj);

42 %Number=Number+1;

43 end

44 end

45 end

46 for qq=1:Num_C

47 Mean_cur=mean(DarkCal{qq}(:));

48 STD_cur=std(DarkCal{qq}(:));

49 for ii=1:N_x

50 for jj=1:N_y

51 if B_pix(ii,jj)>0

52 if DarkCal{qq}(ii,jj) > Mean_cur+D_alpha*STD_cur

53 DarkCal{qq}(ii,jj)=0;

54 end

55 end

56 end

57 end

58 end

59
60 Avg_num=0;

61 Avg_tot=0;

62 S_mean=0;

63 D_STD=0;

64
65 % For every Cal image individually, the following searces for semi bad

66 % pixels, calculates the mean/std without their input, and makes note of

67 % their values.
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68 for qq=1:Num_C

69 for ii=1:N_x

70 for jj=1:N_y

71 if DarkCal{qq}(ii,jj)~=0

72 Avg_tot=Avg_tot+DarkCal{qq}(ii,jj);

73 Avg_num=Avg_num+1;

74 end

75 end

76 end

77 MeanD=Avg_tot/Avg_num;

78 for ii=1:N_x

79 for jj=1:N_y

80 if DarkCal{qq}(ii,jj)~=0

81 S_mean=S_mean+(DarkCal{qq}(ii,jj)−MeanD)^2;
82 end

83 end

84 end

85 D_STD=sqrt(S_mean/Avg_num);

86 for ii=1:N_x

87 for jj=1:N_y

88 if DarkCal{qq}(ii,jj)>MeanD+D_alpha*D_STD

89 DarkCal{qq}(ii,jj)=MeanD;

90 end

91 end

92 end

93 for ii=1:N_x

94 for jj=1:N_y

95 if DarkCal{qq}(ii,jj)==0

96 DarkCal{qq}(ii,jj)=MeanD−HH*rand(1,1)+(HH.*rand(1,1)+HH.*rand(1,1).*rand
(1,1));

97 end

98 end

99 end

100 Avg_num=0;

101 Avg_tot=0;

102 S_mean=0;

103 D_STD=0;

104 end

105
106 D2_alpha=1.5;

107 for qq=1:Num_C

108 for ii=1:N_x

109 for jj=1:N_y

110 if DarkCal{qq}(ii,jj)~=0

111 Avg_tot=Avg_tot+DarkCal{qq}(ii,jj);

112 Avg_num=Avg_num+1;

113 end
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114 end

115 end

116 MeanD=Avg_tot/Avg_num;

117 for ii=1:N_x

118 for jj=1:N_y

119 if DarkCal{qq}(ii,jj)~=0

120 S_mean=S_mean+(DarkCal{qq}(ii,jj)−MeanD)^2;
121 end

122 end

123 end

124 D_STD=sqrt(S_mean/Avg_num);

125 for ii=1:N_x

126 for jj=1:N_y

127 if DarkCal{qq}(ii,jj)>MeanD+D2_alpha*D_STD

128 DarkCal{qq}(ii,jj)=MeanD−HH*rand(1,1)+(HH.*rand(1,1)+HH.*rand(1,1).*rand
(1,1));

129 end

130 end

131 end

132 Avg_num=0;

133 Avg_tot=0;

134 S_mean=0;

135 D_STD=0;

136 end

137
138 % The following creates a final averaged dark callibration frame

139 D_master_sum=zeros(N_x,N_y);

140 for ii=1:Num_C

141 D_master_sum=D_master_sum+DarkCal{ii};

142 end

143 D_master=D_master_sum./Num_C;

B.2 Alpha Codes

The following are the Matlab codes used for track detection and analysis for α particle
tracks in the prototype TPC. The method of which is described in the text.

1 GG=0;

2 Im_max=input('Enter how many light images you have:\n');

3 for gg=1:Im_max

4 A=fitsread(sprintf('alpha−%03dlight.fit',gg));
5 CC=fitsread('alpha−001dark.fit');
6 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
7
8 [N_x, N_y] = size(A);

9 A=A−D_master;
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10 CCD=CC−D_master;
11 STD=std(CCD(:));

12 Mean=mean(CCD(:));

13 alpha=3.3;

14 CR=23;

15 BB = zeros(N_x,N_y);

16 XsYs = zeros(N_x,N_y);

17
18 for ii=1:N_x

19 for jj=1:N_y

20 if B_pix(ii,jj)>0

21 A(ii,jj)=−20 + (20+20).*rand(1,1);

22 end

23 end

24 end

25
26 % The following displays a scaled color image

27 %figure

28 %imshow(A,[],'Colormap',jet(255))

29
30
31 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Track Identification −−−−−−−−−−−−−−−−−−−−−
32
33 % Creates a binary image of all pixels above a threshold value

34 for ii = 2:N_x−1
35 for jj = 2:N_y−1
36 if A(ii,jj)>Mean+alpha*STD

37 XsYs(ii,jj)=1;

38 else

39 XsYs(ii,jj)=0;

40 end

41 end

42 end

43
44 % Remove the edges from the image (we don't want any track that appears

too

45 % close to the edge).

46 EdgeR=15;

47 for ii=1:N_x

48 for jj=1:EdgeR

49 XsYs(ii,jj)=0;

50 end

51 end

52 for ii=1:N_x

53 for jj=N_y−EdgeR:N_y
54 XsYs(ii,jj)=0;

55 end
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56 end

57 for ii=1:EdgeR

58 for jj=1:N_y

59 XsYs(ii,jj)=0;

60 end

61 end

62 for ii=N_x−EdgeR:N_x
63 for jj=1:N_y

64 XsYs(ii,jj)=0;

65 end

66 end

67
68 % Find all connected pixels

69
70 CC = bwconncomp(XsYs);

71 XsYs2=XsYs;

72 A2=A;

73 numPixels = cellfun(@numel,CC.PixelIdxList);

74
75 % Now cycle through each connected pixels (tracks) to find information

76 % about each track.

77
78 for ww=1:length(numPixels)

79 XsYs=XsYs2;

80 A=A2;

81 B=0;

82 idx=ww;

83 for ii=1:length(numPixels)

84 if ii == idx

85 continue

86 end

87 XsYs(CC.PixelIdxList{ii}) = 0;

88 end

89
90 % Ignore small tracks

91 if sum(XsYs(:))<400

92 continue

93 end

94 % Ignore overlapping tracks

95 if sum(XsYs(:))>6000

96 continue

97 end

98 %imshow(XsYs)−−−−−−
99

100 % Remove any isolated pixels

101 for ii = 2:N_x−1
102 for jj = 2:N_y−1
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103 if XsYs(ii+1,jj)==0 && XsYs(ii,jj+1)==0 && ...

104 XsYs(ii−1,jj)==0 && XsYs(ii,jj−1)==0
105 XsYs(ii,jj)=0;

106 end

107 end

108 end

109
110
111 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−Intensity−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
112
113 % For all values in XsYs that a marked one, a correpsonding matrix assigns

114 % pixels values of A to itself: gives TOTAL intenstiy of the track.

115 Intense = zeros(N_x,N_y);

116 for ii = 1:N_x

117 for jj = 1:N_y

118 if XsYs(ii,jj)==1

119 Intense(ii,jj)=A(ii,jj);

120 else

121 Intense(ii,jj)=0;

122 end

123 end

124 end

125
126 % The total pixel value of the image!

127 Intens_tot = sum(Intense(:));

128 Int_end=1000;

129 if Intens_tot<Int_end

130 continue %error('No Valid Track')

131 end

132 GG=GG+1;

133
134 %−−−−−−−−−−−−−−−−−−−−−−−−−Find Curves In Track−−−−−−−−−−−−−−−−−−−−−−−−−−−−
135 % Bin the image order get the width of track to ~1 pixel, to easily show

136 % curve in track. Bin only in the x direction to maintain length.

137 [N_x, N_y] = size(A);

138 Xbin=6;

139 for ii = 1:N_x

140 qq=1;

141 for jj = 1:Xbin:N_y

142 BB(ii,qq)=XsYs(ii,jj)+XsYs(ii,jj+1)+XsYs(ii,jj+2)+XsYs(ii,jj+3)+XsYs(ii,jj

+4)+XsYs(ii,jj+5);%+A(ii,jj+6)+A(ii,jj+7);

143 %+A(ii,jj+8)+A(ii,jj+9)+A(ii,jj+10)+A(ii,jj+11);

144 qq=qq+1;

145 end

146 end

147
148 [BB_x, BB_y] = size(BB);
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149 for ii = 1:BB_x

150 for jj = 1:BB_y

151 if BB(ii,jj)>0

152 BB(ii,jj)=1;

153 end

154 end

155 end

156
157 % Use a Hough Transform to identify lines on the binned image, as well as

158 % the start/end points of each line segment.

159
160 [H,theta,rho] = hough(BB);

161 P=houghpeaks(H,2,'threshold',ceil(0.3*max(H(:))));

162 x = theta(P(:,2));

163 y = rho(P(:,1));

164 lines = houghlines(BB,theta,rho,P,'FillGap',5,'MinLength',7);

165 %imshow(BB), hold on

166 max_len=0;

167
168 % Remove tiny line that messes everything up

169 if length(lines)>2

170 for kk=1:length(lines)

171 ybad(kk)=lines(kk).point2(2);

172 end

173 Ybad=min(ybad);

174 for kk=1:length(lines)

175 if lines(kk).point2(2)==Ybad

176 break

177 end

178 end

179 lines(kk)=[];

180 end

181
182 if length(lines)==1

183 GG=GG−1;
184 continue

185 end

186
187 for k = 1:length(lines)

188 xy = [lines(k).point1; lines(k).point2];

189
190 % plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green');

191 % Plot beginnings and ends of lines

192 % plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow');

193 % plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red');

194 end

195
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196 hold off

197
198 if length(lines)==0

199 GG=GG−1;
200 continue

201 end

202 xy_3 = [lines(1).point1; lines(1).point2];

203 xy_4 = [lines(2).point1; lines(2).point2];

204 xy_1 = [xy_3(1) xy_4(1); xy_3(2) xy_4(2)];

205 xy_2 = [xy_3(3) xy_4(3); xy_3(4) xy_4(4)];

206
207 % With the start/end points of both lines − we can easily find the point

at

208 % which the lines intersect.

209 dx = diff(xy_1); %# Take the differences down each column

210 dy = diff(xy_2);

211 den = dx(1)*dy(2)−dy(1)*dx(2); %# Precompute the denominator

212 ua = (dx(2)*(xy_2(1)−xy_2(3))−dy(2)*(xy_1(1)−xy_1(3)))/den;
213 ub = (dx(1)*(xy_2(1)−xy_2(3))−dy(1)*(xy_1(1)−xy_1(3)))/den;
214
215 xi = xy_1(1)+ua*dx(1);

216 yi = xy_2(1)+ua*dy(1);

217
218 %imshow(A,[],'Colormap',jet(255))

219 %hold on

220 %plot(xi,yi,'*')

221
222 x = [0 length(A)];

223 y = [yi yi];

224 line(x,y)

225
226 % The intersection point of the two lines are taken to be the point that a

227 % substantial curve is detected. Remove all data below this point.

228
229 [N_x, N_y] = size(A);

230 YBot=floor(yi);

231 if yi==Inf

232 GG=GG−1;
233 continue

234 end

235 if isnan(yi)==1

236 GG=GG−1;
237 continue

238 end

239 if yi<0

240 [row, colomn] = find(XsYs);

241 YBot = max(row);
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242 end

243 if yi>length(A)

244 [row, colomn] = find(XsYs);

245 YBot = max(row);

246 end

247 if yi>size(XsYs,1)

248 [row, colomn] = find(XsYs);

249 YBot = max(row);

250 end

251
252 for ii = YBot:N_x

253 for jj = 1:N_y

254 XsYs(ii,jj)=0;

255 end

256 end

257 for ii = YBot:N_x

258 for jj=1:N_y

259 A(ii,jj)=0;

260 end

261 end

262 if yi==1

263 yi=2;

264 YBot=2;

265 end

266 Bottom=0;

267 for ii=1:N_y

268 if XsYs(YBot−1,ii)==1
269 Bottom=Bottom+1;

270 end

271 end

272 BotNum=round(Bottom/2);

273 for ii = 1:N_y

274 if XsYs(YBot−1,ii)==1
275 break

276 end

277 end

278 BotMid=BotNum+ii−1;
279
280 % Find the highest y value

281 [row, colomn] = find(XsYs);

282 YTop = min(row);

283 YTop=YTop+8;

284 Toptop=0;

285 for ii=1:N_x

286 for jj=1:YTop

287 XsYs(jj,ii)=0;

288 end
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289 end

290 YTop=YTop+1;

291 for ii=1:N_y

292 if XsYs(YTop,ii)==1

293 Toptop=Toptop+1;

294 end

295 end

296 TopNum=round(Toptop/2);

297 for ii = 1:N_y

298 if XsYs(YTop,ii)==1

299 break

300 end

301 end

302 TopMid=TopNum+ii−1;
303
304 %imshow(XsYs)

305 hold on

306 % plot(BotMid,YBot,'*')

307 % plot(TopMid,YTop,'*')

308 hold off

309
310 % We now have the (x,y) values of the middle of the top and bottom of the

311 % track. With this information, we can rotate the image so the track

312 % alligns with the y axis.

313
314 if sum(XsYs(:))==0

315 GG=GG−1;
316 continue

317 end

318 % Find distance between two points

319 Length=sqrt((TopMid−BotMid)^2+(YTop−YBot)^2);
320 if length(Length)==0

321 GG=GG−1;
322 continue

323 end

324 % Find X distance between the points

325 X_dist=abs(BotMid−TopMid);
326 % Find angle between the points

327 Ang = asin(X_dist/Length);

328
329 %rotate the image (Both XsYs2 and A)

330 Deg=57.2958*Ang;

331 if BotMid−TopMid<0
332 B = imrotate(A,Deg);

333 elseif BotMid−TopMid>0
334 B = imrotate(A,−Deg);
335 else



Appendix B. Matlab Codes 32

336 B=imrotate(A,Deg);

337 end

338 if BotMid−TopMid<0
339 BXsYs = imrotate(XsYs,Deg);

340 elseif BotMid−TopMid>0
341 BXsYs = imrotate(XsYs,−Deg);
342 else

343 BXsYs=imrotate(XsYs,Deg);

344 end

345 [B_x,B_y] = size(B);

346
347 % Now remove all data except a square in the image that comtains the track

.

348 for ii=1:B_x

349 BBB=0;

350 GGG=0;

351 for jj=1:B_y

352 BBB=BXsYs(ii,jj)+BBB;

353 if BBB>0

354 GGG=ii;

355 break

356 end

357 end

358 if GGG==ii

359 break

360 end

361 end

362 BYTop=ii;

363 BToptop=0;

364 for ii = 1:B_y

365 if BXsYs(BYTop,ii)==1

366 BToptop=BToptop+1;

367 end

368 end

369 BTopNum=round(BToptop/2);

370 BTopFind=0;

371 for ii = 1:B_y

372 if BXsYs(BYTop,ii)==1

373 BTopFind=BTopFind+1;

374 end

375 if BTopFind==BTopNum

376 break

377 end

378 end

379 BTopMid=ii;

380 BOXtop=5;

381 BOXside=30;
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382 for ii = 1:BYTop−BOXtop
383 for jj=1:B_x

384 B(ii,jj)=0;

385 end

386 end

387 for ii = 1:B_y

388 for jj = 1:BTopMid−BOXside
389 B(ii,jj)=0;

390 end

391 end

392 for ii = 1:B_y

393 for jj = BTopMid+BOXside:B_x

394 B(ii,jj)=0;

395 end

396 end

397
398 % Add all values along the columns to find the width of the track.

399 Tot=sum(B);

400 Xs=1:length(Tot);

401 % Fit a Gaussian to the data

402 f = fit(Xs.',Tot.','gauss1');

403 %plot(f,Xs,Tot)

404 %pause

405
406 % Calculates FWHM

407 FitCoef=coeffvalues(f);

408 c_i=FitCoef(3);

409 sigma=c_i/sqrt(2);

410 width=2*sqrt(2*log(2))*sigma;

411
412 % Store some data: this will be used in scatter plots later on. Note, here

413 % Length is the length of the cut track (curved removed).

414 FWHM=width';

415 Intensity=Intens_tot';

416
417 Length_list(GG)=Length;

418 Int_list(GG)=Intensity;

419 Ang_list(GG)=Deg;

420 FWHM_list(GG)=FWHM;

421
422
423 if FWHM > 18

424 GG=GG−1;
425 continue

426 end

427
428 if Length < 20



Appendix B. Matlab Codes 34

429 GG=GG−1;
430 continue

431 end

432 if Deg>25

433 GG=GG−1;
434 continue

435 end

436
437 end

438 end

B.3 55Fe Codes

The following are the Matlab codes used for track detection and analysis for 55Fe x-ray
tracks in the prototype TPC. The method of which is described in the text.

1 NumFE=input('How many Fe55 images are there?\n');

2 Intens_tot=zeros(1,1);

3 SIZE = 20;

4 for gg=1:NumFE

5 A=fitsread(sprintf('fe55−%03dlight1.fit',gg)); %200 rn

6 CC=fitsread('fe55−001dark1.fit');
7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
8 [N_x, N_y] = size(A);

9 A=A−D_master;
10 CCD=CC−D_master;
11 STD=std(CCD(:));

12 Mean=mean(CCD(:));

13 alpha=1.7;

14 XsYs = zeros(N_x,N_y);

15 XsYs2= zeros(N_x,N_y);

16 for ii=1:N_x

17 for jj=1:N_y

18 if B_pix(ii,jj)>0

19 A(ii,jj)=0; %0

20 end

21 end

22 end

23
24 % The following displays a scaled color image

25 %imshow(A,[],'Colormap',jet(255))

26 for ii = 2:N_x−1
27 for jj = 2:N_y−1
28 if A(ii,jj)>Mean+alpha*STD

29 XsYs(ii,jj)=1;

30 else
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31 XsYs(ii,jj)=0;

32 end

33 end

34 end

35 EdgeR=4;

36 for ii=1:N_x

37 for jj=1:EdgeR

38 A(ii,jj)=0;

39 end

40 end

41 for ii=1:N_x

42 for jj=N_y−EdgeR:N_y
43 A(ii,jj)=0;

44 end

45 end

46 for ii=1:EdgeR

47 for jj=1:N_y

48 A(ii,jj)=0;

49 end

50 end

51 for ii=N_x−EdgeR:N_x
52 for jj=1:N_y

53 A(ii,jj)=0;

54 end

55 end

56
57 % Remove any isolated pixels

58 for ii = 2:N_x−1
59 for jj = 2:N_y−1
60 if XsYs(ii+1,jj)==0 && XsYs(ii,jj+1)==0 && ...

61 XsYs(ii−1,jj)==0 && XsYs(ii,jj−1)==0
62 %XsYs(ii+1,jj+1)==0 && XsYs(ii−1,jj+1)==0 &&

63 %XsYs(ii+1,jj−1)==0 && XsYs(ii−1,jj−1)==0
64 XsYs(ii,jj)=0;

65 end

66 end

67 end

68 Ilabel = bwlabel(XsYs);

69 stat = regionprops(Ilabel,'centroid');

70 XXX=zeros(length(stat),2);

71 %imshow(A,[]); hold on; %−−−
72 for x = 1: numel(stat)

73 %plot(stat(x).Centroid(1),stat(x).Centroid(2),'ro'); %−−−
74 XXX(x,:)=[stat(x).Centroid(1),stat(x).Centroid(2)];

75 end

76 %hold off

77 %imshow(XsYs)
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78 %pause

79 Intensities=zeros(length(XXX),1);

80 B=zeros(size(A));

81 for ii = 1:length(XXX(:,1))

82 XsYs2=bwselect(XsYs,XXX(ii,1),XXX(ii,2),4);

83 if sum(XsYs2(:)) < SIZE

84 continue

85 end

86 for jj = 1:N_x

87 for qq = 1:N_y

88 if XsYs2(jj,qq)==1

89 B(jj,qq)=A(jj,qq);

90 else

91 B(jj,qq)=0;

92 end

93 end

94 end

95 if sum(B(:))==0

96 continue

97 end

98 if sum(B(:))>20000

99 continue

100 end

101 Intensities(ii)=sum(B(:));

102 Intens_tot(end+1)=Intensities(ii);

103 if Intensities(ii)>1500

104 %imshow(XsYs2)

105 %figure

106 %imshow(A,[])

107 %pause

108 % Use this to show that most tracks above a certain int. value is in

109 % fact two overlapping tracks.

110 end

111 end

112 end

113
114 figure

115 histogram(Intens_tot,60)
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