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Dark matter presents itself as one of the greatest mysteries to modern physics. The
Weakly Interacting Massive Particle (WIMP) has been deemed a strong candidate for
the makeup of this mysterious substance. Direct Detection of WIMPs involve the detec-
tion of nuclear recoils in Time Projection Chambers (TPCs) to determine the direction of
incoming WIMP flux. TPCs fall victim to electron diffusion, making directionality diffi-
cult to determine at low recoil energies. In this thesis, we make use of the effect of CS,
to reduce diffusion in the detector. We were able to reduce the width of alpha particle
tracks by 75% while maintaining high light yield. From this research we determined the
ideal ratio of CSs to CF, in the vessel to be about 3:150 Torr, or 2%. The ability for CS;
to diminish diffusion is extremely powerful; the directionality of lower energy recoils
can be better determined. With such a strong tool, we are one step closer to the direct
detection of dark matter.
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Chapter 1

Introduction

1.1 A Brief Introduction to Dark Matter

The idea that there exists a type of matter completely invisible to the human eye has long
been considered a fact of the Universe. Nineteenth century astronomers speculated the
existence of “dark nebulae” and ”dark stars”, both of which carried mass and took up
space but lacked the ability to emit light (Bertone and Hooper, 2016). This idea carried
over into the work of Lord Kelvin and Jan Oort, who began making measurements of
stellar velocity dispersions within the Milky Way in the early twentieth century. They
concluded that the total mass of some arbitrary “dark matter”, while not inconsequen-
tial, was probably much less than that of visible matter.

Dark matter did not begin building traction until the works of Fritz Zwicky in 1933.
Zwicky, who studied the redshift of various galactic clusters, stumbled upon a kine-
matic phenomenon in the Coma cluster: the velocities of several galaxies were largely
dissimilar, sometime differing by 1000 km/s (van den Bergh, 1999). These unexpect-
edly large velocity dispersions were not possible without the existence of especially
high masses within the cluster. Zwicky set off to determine the observable mass of the
system by multiplying the average mass of a galaxy (then estimated to be about 10° M)
with the number of observed galaxies (Bertone and Hooper, 2016). His estimation indi-
cated that the velocity dispersion within this particular cluster should not reach much
higher than 80 km/s. The observational evidence that disagreed with theoretical predic-
tions led to Zwicky’s conclusion that, in contrast with Kelvin and Oort, dark matter is
present in the Universe in much greater amounts than luminous matter (Zwicky, 1933).

Fritz Zwicky is often described as the pioneer of dark matter, but some of dark mat-
ter’s most compelling evidence came in the form of galactic rotation curves. In 1970,
Vera Rubin and Kent Ford made measurements of, with high degrees of certainty, the
mass and rotational velocity of the Andromeda Galaxy (or M31) up to a radius of 24
kpc (Rubin and Ford, 1970). This led to a surprising result: the mass density due to
luminous matter decreased at high radii, but the velocity did not; there is likely some
additional form of matter in abundance that was contributing to the total gravitational
potential, and thereby rotational velocity, of the galaxy.

Cluster velocity dispersions and galactic rotation curves confirmed that there was a
lot of dark matter in the Universe, but until the era of precision cosmology the specific
amount was poorly constrained. This changed in 2010. After 9 years of taking data,
the Wilkinson Microwave Anisotropy Probe (WMAP) satellite-based experiment deter-
mined that the geometry of the Universe is flat (Komatsu, 2014). This fact tells us that
the total energy density of the Universe is equal to its critical value, but also gives us
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an accurate value of the baryonic and dark matter densities in the Universe. In fact, it
was determined that baryonic matter makes up about 4.6 percent of the contents of the
Universe, while dark matter makes up about 24 percent. The remainder consists of 71.6
percent dark energy (Hinshaw et al., 2013).

Numerous theories exist today regarding the actual make-up of dark matter, how-
ever a few of its specific qualities are largely widespread: it should have mass, be neu-
trally charged, and lack any capability to interact electromagnetically. One of the lead-
ing candidates for dark matter is the Weakly Interacting Massive Particle, or, the WIMP.

1.2 The WIMP and Motivation for Directional Dark Matter De-
tection

As the name suggests, the WIMP is theorized to couple with ordinary matter through
the weak interaction. If true, dark matter can be observed via its rare interactions with
atoms in a detector.

There are three ways that have been proposed to detect the WIMP (Mount, 2017).
First, using particle colliders to produce WIMPS at high energies. Here, WIMPS would
show themselves as missing energy and momenta from the collision. Second, through
Indirect Detection (ID) methods that look for WIMP-WIMP annihilation in locations
in which dark matter tends to concentrate, such as the galactic center and in the Sun.
These ID techniques assume the WIMP is its own antiparticle (a Majorana particle) and
will have identifiable secondary particles, such as photons and neutrinos, produced in
their annihilation. Finally, Direct Detection (DD) techniques search for the interaction
between WIMPS and baryonic matter. This weak interaction produces traceable recoils
in the atomic nuclei of a detector.

Direction detection techniques provide one very specific advantage over the others:
nuclear recoils should have a directional signature attached to them. The Sun travels
through the Milky Way with a velocity of about 230 km/s in the direction of the con-
stellation Cygnus (Lewin and Smith, 1996). Galaxy formation theories and simulations
indicate that dark matter does not co-rotate with the stars and gas in the galaxy. In
this scenario the solar motion through the dark matter halo will result in a dark matter
“wind” from the direction of Cygnus. Thus, if we can detect the tracks of nuclear recoils
resulting from WIMP interactions, they should be directed opposite to Cygnus. Such a
detection would provide an unambiguous signature for a WIMP discovery.

The concept of a directional WIMP wind is the motivation behind several DD exper-
iments. In particular, the Directional Recoil Identification From Tracks (DRIFT) experi-
ment makes use of a Time Projection Chamber (TPC) to search for and study the direc-
tional signature resulting from dark matter-based nuclear recoils (Daw, 2012). DRIFT is
one of a number of directional dark matter experiments that use the gaseous TPC tech-
nology. The work described in this thesis also uses a TPC but, unlike DRIFT, it uses a
scintillating gas (CF4) and a CCD readout to detect recoil tracks.

1.3 Owur Detector

A TPC is able to make 3D reconstructions of nuclear recoil tracks, which provides the
ability to determine the directionality of any given recoil. To make measurements of
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FIGURE 1.1: A schematic diagram of the prototype TPC. Not to scale.
(Loomba, 2013)

nuclear recoils of various origin, we have made use of a prototype TPC developed by
Nguyen Phan, a former graduate student at the University of New Mexico (Phan et al.,
2016).

This detector resides in a cylindrical aluminum vacuum vessel 16 ¢cm tall and 29
cm in diameter. The vessel was filled with 150 Torr of carbon tetrafluoride (CFy). The
detector, a representation of which can be seen in Figure 1.1, contains a cathode mesh,
an anode wire grid, and three Gas Electron Multipliers (GEMs). The GEMs, which were
designed and produced at CERN, are 7 cm x 7 cm and are made of 50 um thick kapton
foil that has 5 microns of copper cladding on both sides. Each GEM is covered in 50 m
holes, with a pitch of 140 um. Above the detector is a charged-coupled device (CCD)
camera with a 1024 x 1024 pixel sensor array. Attached to the CCD is a 58 mm f/1.2
lens on a 20 mm extension tube. A Polonium-210 (*'°Po) and Iron-55 (*°Fe) source were
placed inside the detector, each of which could be turned on or off on demand.

To fully understand the importance of the detector’s components, it is first impor-
tant to understand the function of a TPC. As an energetic particle enters the detector, it
interacts and ionizes atoms along a track. The electrons emitted in this interaction are
carried upwards towards the GEMs by an electric field produced between the cathode
mesh and GEMs. Upon reaching the GEMs, the electrons undergo a massive stage of
multiplication. The electrons are guided into the small holes in the GEMs, where an
especially strong electric field ionizes the gas in the detector even further. This process,
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known as electron avalanche, occurs in each of the three GEMs. The term “gas gain” is
used to describe the level of electron multiplication that occurs during the avalanche.
In our detector we are able to reach an effective gas gain of over 105, meaning that for
every one electron that reaches the first GEM, over 10,000 electrons leave the third.

With nuclear recoils of higher energy, the directionality is easy to discern: meaning
the tracks are well resolved, clearly indicating the recoil direction. However, as the
energy decreases, these tracks become short and diffusion limited, so directionality is
lost; they appear as blobs rather than lines (see Figure 1.2).

FIGURE 1.2: Left: a nuclear recoil track with a recoil energy of 302.4 keV.

Here, directionality can be determined from the linear shape of the track.

Right: a nuclear recoil track of 10 keV. The energy of this track is too low
to easily determine directionality. (Loomba, 2013)

The gas in the chamber, CF,, was originally chosen for preliminary testing due to
its high capacity for scintillation. During the avalanche both electrons and scintillation
photons are produced, which allows us to optically image the track with a lens and CCD
camera. However, ionization that forms the track diffuses as it drifts along the electric
field towards the anode. In the next section we discuss diffusion and how it can be
minimized with appropriate gas mixtures. This is one of the key subjects of this thesis.

1.4 Diffusion in the Detector

One solution to the electron diffusion problem is to add an electronegative gas, such as
CS,, into the detector (Martoff et al., 2000). CSy has the benefit of having high electron
affinity (Phan et al., 2016). CS, molecules capture the electrons initially produced by the
recoiling particle (atom or electron), forming negative ions that drift towards the GEMs.
The large mass (in comparison to electrons) of these molecules, allows for much lower
drift velocity and also results in much lower diffusion, which occurs in the thermal
regime. However, CS; lacks CF4’s strong scintillating properties.

Phan showed (Phan et al., 2016) that adding small quantities of CS2 to CF4 could
provide the low diffusion benefits of CS2 without a large loss of scintillation. The goal of
this thesis is to quantify this by measuring the reduction in both diffusion and scintilla-
tion light as a function of the partial pressure of CS2 in 150 Torr of CF4. The experiments,
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described below, will add CS2 in increments of about 0.5 Torr and make measurements
of alpha particle and low energy 55Fe tracks to measure diffusion and scintillation light.
We will show that we can achieve low diffusion, approaching the minimum thermal
limit, without a too large loss of light.
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Alpha Tracks

2.1 Why Use a Tracks

The 2'°Po source decays to emit an alpha () particle. We have chosen « tracks to mea-
sure diffusion and its reduction as a function of the CS; fraction in the dominant CF, gas.
«a particles rarely generate nuclear recoils in the detector. Instead they travel in mostly
straight paths, strongly ionizing the gas and therby leaving a trail of ion-electron pairs.
The tracks produced are long, straight, and bright (see 2.1). The intrinsic track should
be very narrow, which broadens considerably due to diffusion when the electrons drift
to the GEMs. Thus, measuring this width provides an excellent estimate of diffusion.

FIGURE 2.1: Three distinct « tracks observed in the prototype TPC. The
color chart shows the high signal-to-noise of the particles. Here the qual-
ities of being long, straight, and bright are apparent.

One key trait of o tracks is their uniform widths. Lengths vary depending on a
variety of variables: The 210pg source emits « particles in all directions, therefore we
use a colimator to narrow the angular spread. Nevertheless, as will have a distribution
in direction and lengths as observed in our detector. Similarly, the loss of « particle
energy in the detector is not constant due to energy loss fluctuations and variations in
direction; particles with higher initial energy loss will be produce shorter tracks than
those with smaller initial loss. Despite this, track widths remain fairly consistent.

This fact can be manipulated to quantify diffusion as a function of CS; fraction.
Our procedure was to add CS; in increments of about 0.5 Torr to about 150 Torr of CF,.
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Measurements of diffusion with « tracks and light output with *Fe x-rays (next Section)
were undertaken for each gas mixture. This will also allow us to see the moment of
diminishing returns in the detector. We suspect that, at a certain ratio of CSy and CFy,
the low diffusion advantage of CS, will no longer increase with any addition of the gas.

Widths of several hundreds of tracks at each CSs increment will need to be acquired
to achieve statistically significant results. Similarly, widths must not be calculated by
eye as this can lead to bias and an overall incorrect result. The following section de-
scribes an algorithm that can correctly calculate a large volume of track widths without
any human bias.

2.2 The Algorithm

2.2.1 Initial Identification

I have developed an algorithm that correctly and efficiently analyzes a large data set of
a tracks. This algorithm isolates particle tracks and measures their widths, the process
of which is described in detail in this section.

Recall that the CCD camera is comprised of a 1024 x 1024 pixel sensor array, therefore
a standard 1x1 pixel binning image will similarly be made up of 1024 x 1024 pixels.
To improve signal-to-noise in the image, the image can be binned with a higher pixel
number. “Binning” is the process of combining the charge of adjacent pixels, improving
signal-to-noise but reducing resolution. A 4x4 binning image implies every square of
16 pixels is reduced to 1 pixel in the final image. Similarly, in an image of 1x1 binning,
each pixel in the image corresponds to 29 microns of real space. Therefore each pixel in
a 4x4 binned image corresponds to 116 microns.

We use 2x2 binned images to maintain high resolution while gaining the additional
benefit of improved signal-to-noise. All images were imaged with a 1 second exposure
time. Figure 2.2 shows a 2x2 image of « tracks after the image has been calibrated (see
Appendix B.1).

Track identification is a key aspect to the algorithm. First, every pixel value is com-
pared to the average value of the background. Pixels whose value are 30 above the mean
are chosen and exported to a second image (see Figure 2.3). This second, binary image is
composed entirely of 1s and 0s: high intensity pixels and the background, respectively.

It is important to note that the binary image contains all high intensity pixels of the
original image. Cosmic rays often create high intensity noise within CCDs. Free stream-
ing cosmic particles pass directly through the silicon detector of the CCD, producing
singular bright pixels within an image. Charge from these bright spots can spill over
into adjacent pixels in the CCD, creating small trackless regions of unusually high en-
ergy (Howell, 2000). As such, the algorithm must be able to search for isolated, high
intensity pixels due to cosmic rays.

The algorithm makes use of the Matlab function bwconncomp, which selects and
records every group of adjacent 1s in the binary image. After looking at the total pixel
number within each connected region, the algorithm cuts any “track” of less than a spe-
cific size. Once the actual tracks have been determined we can call upon each individual
track stored by bwconncomp, allowing us to analyze multiple tracks per image. The al-
gorithm cycles through every legitimate track, carrying out individual analysis for each
one.
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50 100 150 200 250 300 350 400 450 500
X (pixels)

FIGURE 2.2: A 2x2 FIGURE 2.3: A binary
binned image with 4 replication of Figure
distinct a tracks. The 2.2. Here, all pixels 30
tracks stand out clearly above the background
from the background are given a value of 1,

noise. while others remain at 0.

2.2.2 Straight Segments and the Hough Transform

To obtain a significant measurement of the width of every « track, the algorithm must be
able to determine the width over a straight segment of the track. This, however, raises
the additional issue of requiring the track to be completely straight over the selected
track segment (see Figure 2.4). The solution to this problem is found in the manipulation
of the Hough Transform: an image analysis technique for detecting lines in pictures. A
detailed explanation of the Hough Transform can be found in Appendix A

After selecting an individual track (see Figure 2.4), the algorithm bins the new binary
image by a factor of 6 in the x direction. This post-imaging binning combines the pixel
value of every 6 column-adjacent pixels. After following this process for every row, we
are left with a track of equal length but with a width of only 4 or 5 pixels (see Figure
2.5).

Once the image has been binned in this way, the Hough Transform can be applied to
find the two longest line segments detected in the track. The two detected lines follow
the two longest portions of the track: the straight top segment, and the straight bottom
segment that follows the curve. The transform outputs the x and y coordinates of the
start and endpoints of each line. With these coordinates we can determine the equation
of each line, and therefore find the point where the two lines intersect (see Figure 2.6).

The intersection coordinates of the two Hough lines could not be more valuable.
The curvature of the track begins just below the y value of this point. We can carry the
y value back to the original image and set all pixel values below this point to 0, leaving
us with a completely straight segment of track (see Figure 2.7)
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FIGURE 2.4: A single o
track from Figure 2.2 in

its binary representation.
A curve is easily visible
at its lowest point.

FIGURE 2.6: The Hough
lines and their intersec-
tion point (in red).

FIGURE 2.5: The same
track with 6 times X-
binning. The curve is
still observable at the
base of the track.

FIGURE 2.7: The original
individual binary track
with a line drawn over
the y location found in
the Hough Transform.
All pixel values below
this line will be set to 0.
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2.2.3 Rotation and Width Calculation

Once a straight segment has been selected, the algorithm can begin to calculate the
width of the track. To do this, the original image (Fig. 2.2) is rotated so the track is
aligned with the y-axis. Image rotation is carried out using Matlab’s imrotate function,
which requires the angle by which the image should be rotated. To determine this angle,
the algorithm finds the center (in (x,y) coordinates) of the top and bottom of the track.
The total distance, as well as the difference in x-values, can then be calculated. Using
basic trigonometry in conjunction with this information yields the angle needed to align
the track with the y-axis. A better rotation method is the Radon Transform, which will
be used in future iterations of this work (Kolouri, Park, and Rohde, 2016).

Upon rotation of the image, pixel values surrounding the track are removed, isolat-
ing the pixels belonging to the track (see Figure 2.8). With the track correctly rotated,
the algorithm is ready to calculate its width. The pixels in the track are projected onto
the x-axis. Pixels in every column are added so that we are left with a one dimensional
vector of pixel intensities. The algorithm then plots this data against the x-axis. Due to
the diffusion of the « tracks, the projection has a high intensity in the center that tapers
off towards its edge; the plot takes the shape of a Gaussian distribution. The algorithm
fits a Gaussian curve to this data (see Figure 2.9) and extracts the standard deviation (o).
Using o, the full width at half maximum (FWHM) of the distribution is calculated. It is
the FWHM of the Gaussian distribution that we use to quantify the diffusion of the «
particle tracks.

FIGURE 2.9: Gaussian
distribution fit to the
projected intensity. The
FWHM extracted from
this fit is what we use to
characterize diffusion.

FIGURE 2.8: The straight
segment of the track, ro-
tated to be aligned with
the y axis. All other pixel
data has been removed.

This entire process is repeated until every o track in every image has been analyzed,
with the FWHM calculated for each track. The algorithm can be found in Appendix B.2.
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2.3 Results for Diffusion from o« Widths

Prior to any addition of CSy, the algorithm ran through 300 images of « tracks allowing
for the calculation of roughly 300 FWHMs (some images had 3 or 4 tracks, others had
none). The resulting distribution is seen in Figure 2.10, whose median was calculated to
be FW H My = 20.16 pixels. One pixel corresponds to 29 microns, implying F'W H M, =
1169.3 microns.

FIGURE 2.10: The FWHM distribution for 2x2 binning with pure CF, (ie.
no CS,.)

After initial calculations we incrementally added CS, into the prototype TPC. The
effect of the CS; was immediate and very apparent; track width decreased immensely
(see Figure 2.11 and Figure 2.12), even with just 0.5 Torr of CS,. It is important to note
that the pressure withing the detector increased as CS; was added, meaning no CF4 was
removed to maintain constant pressure.

This procedure was repeated 10 additional times, each with increasing increments
of CS2 (see Table 2.1). The « widths, and therefore diffusion, no longer appeared to
decrease after about 3.0 Torr of CSs. However, we cannot rule out that this is due to
pixelization or the GEM hole pitch. Decreased width is limited by the resolution of the
CCD. With 2x2 binning, no track can be observed to be smaller than 2 pixels; there is a
”binning floor” in which the CCD camera interferes with our ability to observe increas-
ing CSy benefit. This issue can temporarily be solved by imaging with 1x1 binning to
improve resolution, which will be attempted in further iterations of this work.

Itis important to note that the process of adding precise quantities CS, into the vessel
was not without error. CS; can be absorbed by plastic components in the detector. As
such, additional CS, was added to ensure the final outcome matched the increment
values stated in the table above.

Despite the restraints due to absorption and resolution, one thing is for certain: CS;
is clearly effective for reducing diffusion in TPCs. However, as stated earlier it also
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FIGURE 2.11: 2x2 bin-
ning image of « tracks in
a mixture of 150 Torr CF,
and 0.5 Torr CS,. Track
width is drastically re-

FIGURE 2.12: « track in
mixture of 150 Torr CF,
and 5.9 Torr CS,. Here,
tracks are even thinner.
Improved resolution will

duced compared to 2.2. likely improve results.
H Torr of CSy;  Median FWHM (um) o H
0 1169.3 497.6
0.5 612.48 260.6
1.2 407.74 173.5
1.8 374.1 159.2
2.3 356.7 151.8
2.9 338.14 143.9
3.5 329.44 140.2
4.1 323.64 137.7
4.7 326.54 140
5.4 323.06 137.5
5.9 328.28 139.7

TABLE 2.1: FWHM and o of « particle tracks calculated using 11 incre-

ments of CS,.
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lowers the scintillation light produced in CF,. To find the ideal ratio of CS; to CFy it is
now important to determine the scintillation light yield for each increment of added CS,
using the Iron-55 (*>Fe) calibration source, which produces 5.9 keV x-rays. The electrons
produced in the conversion of these x-rays in the gas leave short tracks that are detected
similarly to the alpha tracks described above. A spectrum of intensities of °Fe tracks is
used to characterize the light loss due to CS,, as described in the next chapter.
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Chapter 3

>Fe and X-Ray Tracks

3.1 Why Use *°Fe

5Fe is often used in calibration for scintillation detectors due to its near-exclusive emis-
sion of constant energy x-rays (Schotzig, 2000). K-alpha x-rays, which are a result of
electron capture within the “*Fe nucleus, are emitted with an energy of 5.89 keV at high
frequency. If placed into our prototype TPC, these x-rays are of high enough energy to
produce ionization tracks (see Figure 3.1).

FIGURE 3.1: 4x4 binning image of 5.89 keV K-alpha x-ray tracks produced
by an °Fe source. They are small and dim, but their intensities are con-
stant.

Due to their low energy and low energy loss, °Fe tracks are not nearly as bright
as « particle tracks. However, creating x-ray energy spectra at various increments of
CS, provides a strong method to determine decreased light yield as a function of CS;
percentage, as the peak of these spectra will always correspond to 5.89 keV. Intensities
of a large number of tracks must be acquired to produce such spectra. As such, a sec-
ond algorithm was written that detects *Fe tracks and produces a spectrum of their
intensities. It is this spectrum that is used to quantify the light loss due to CS,.

3.2 The Algorithm

I have developed a second algorithm that, much like the first, begins by creating a bi-
nary image of all x-ray tracks in the image. Pixels whose intensity surpasses a certain
multiple of the standard deviation of the background are selected as potential tracks.
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In the case of the x-ray track images this value is lower than that of the a tracks, as the
dimmer x-ray tracks are closer in intensity to the background: For 16x16 binning, I chose
that a pixel must have an intensity of 1.5¢ above the background to be a candidate for a
track. An example of this binary image can be seen in Figure 3.2. A low ¢ value insures
the entire track is selected.

Signal-to-noise of these tracks are low enough to allow many pixels with no track
affiliation into the binary image. Matlab’s bwconncomp function is used, once again, to
record connected groups of pixels; any collection fewer than 7 pixels are discarded with
the remainder characterized as tracks. All remaining pixel groups are cycled through
individually (see Figure 3.3).

50 100 150 200 250 50 100 150 200 250

X (pixels) X (pixels)
FIGURE 3.2: A 16x16 FIGURE 3.3: Selection of
binary image of every an individual track al-
pixel 14¢c above the lowing for further analy-
background average. sis.

Once a track has been selected, the intensity values of the corresponding pixels in
the original image are summed, giving us the total intensity of the x-ray track. This
process is repeated for every track in the image, and every image taken for a particular
increment of CS,.

3.3 Results for Light Loss with CS,

After determining all individual track intensities for 0 CSy, an energy spectrum can be
created. This is merely a histogram of the aforementioned intensities (see Figure 3.4).
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FIGURE 3.4: Energy spectrum of 5.9 keV x-rays at 16 by 16 binning. A

peak lies clearly around 3170 ADUs. The high number of low energy

tracks are a result of non-track pixels that escaped elimination. The sec-
ond peak around 6200 ADUs is a direct result of overlapping tracks.

This process was repeated with increasing fractions of CSs, in increments of about
0.5 Torr. As signal-to-noise is more important than resolution, 16 by 16 binning was
chosen to guarantee x-ray tracks would still be visible at high levels of the gas. Peak
intensities were recorded at each CS; increment resulting in the following data:

H Torr of CS;  Peak Intensity (ADUs) H

0 3175
0.5 1115
1.2 995
1.8 895
23 625
29 595
3.5 495
4.1 485
4.7 445
54 385
59 365

TABLE 3.1: Peak intensities (in ADUs) determined at every increment of
CS;.
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3.4 Summary: the Ideal CS; Concentration

The decreasing trend in light yield was apparent in the *Fe data. This information can
can be coupled with the data acquired of « track widths to find the ideal ratio of CF4
and CS; (see Figure 3.5).

FIGURE 3.5: Here, the remarkable effect of CS; is easy to see, while the

constant decrease in light yield is similarly visible. The ideal amount of

CS; occurs between 3-4 Torr, after which the o width appears to reach a
minimum.

From Figure 3.5 it is easy to see that the decreased width of « tracks plateaus around
a o of 150 microns. However, light yield continues to decrease steadily. The o plateau
occurs around 3 Torr of CS,. It can therefore be concluded, assuming that this plateau is
truly the point of diminishing returns and not a result of poor resolution, that the ideal
ratio of CS, to CF, is approximately 3:150, or 2%.



18

Chapter 4

Conclusions and Further Research

Changes can be made to improve the results of this thesis. As stated previously, 1x1
binning images should be taken at all increments of CSy. This will show a further de-
crease in width assuming pixelization from the 2x2 images resulted in a hard limit of
width reduction. Light yield was not an apparent issue at 2% CS;, so increasing the
ratio above 2% is certainly an option. Similarly, the use of a radon transform to rotate
the images will remove some unfortunate blemishes created in the images due to naive
image rotation techniques. This can show, more accurately, the true effect of the CS,.

An important aspect of CS is its toxicity. The National Center for Biotechnology
Information’s database on chemical molecules PubChem lists CS, as a dangerous chem-
ical. The chemical is not only flammable, but also a powerful neurotoxin and can result
in reproductive toxicity. These dangers have kept the gas from widespread use. Fortu-
nately, there exists a second electronegative gas with nearly identical properties to CSs
called sulfur hexaflouride (SFg). SFg has the added benefit of being entirely safe breath,
and therefore lack any safety concerns in a laboratory setting. This strong replacement
requires the same analysis as done in this thesis, but similar, or identical, results are
expected.

A roughly 75% reduction in width increase due to diffusion is remarkable; clearly
CS; is a powerful tool to combat diffusion within TPCs. Although the advantages of
CS; are obvious, its true potential has yet to be determined. Direct dark matter detection
experiments must be able to resolve nuclear recoil tracks of very low energies. CS, will
vastly improve upon the lower limit of recoil energies set by pure CF4 detectors. In
future iterations of this work we will determine the lowest energy of nuclear recoil in
which directionality can be determined using the new ideal ratio of 2% CS,. Given the
success of our results thus far, we expect that value to drop significantly, bringing us
one step closer to detecting the WIMP.
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Appendix A

Mathematics of the Hough
Transform

The Hough Transform is a powerful line detection tool in modern image analysis. The
following describes the mathematic process of this transform. In Cartesian coordinates,
a line has the equation:

y=mx+b (A1)

where m and b are the parameters giving slope and y-intercept, respectively. Points on
the line (x;,y;) similarly follow the equation:

yi =mx; +b (A2)

Every single point on the line is related to every other point by this equation; each (z;,y;)
are related by the same m and b values.Therefore, the Cartesian equation of a line can
be mapped onto a new, slope-intercept coordinate system. Here, every line follows the
equation:

b=m(—x)+y (A.3)

The points (x;,y;) can be plotted as lines in the this new coordinate system. These new
lines will all intersect at a single point (m,b), which are the slope and y-intercept of the
original line. This idea (shown in Figure A.1) forms the basis of the Hough Transform.

FIGURE A.1: (a) shows several points (z;,y;). Together, these points form

a line. (b) shows the lines created using Equation A.3 intersecting at one

point: (m,b). (c) shows the line created using the slope and intercept (m,b)
found in (b)
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This method runs into issues when the slope nears or becomes infinity (vertical
lines). To solve this issue, the lines are instead written in trigonometric form:

xcosh +ysinfh =p (A4)

Where p is the distance from some origin and 6 is the angle between the y axis and g (as
seen in Figure A.2).

FIGURE A.2: A line parameterized by p and 6.

The Hough Transform takes a binary image and plots every illuminated ”1” pixel as
a curve in the new parameter space. A line in the image is then detected by looking at
(p,0) point in which the highest number of intersections occur.

For further review of the Hough Transform, see Illingworth and Kittler, 1988 and
Shehata Hassanein et al., 2015.
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Appendix B

Matlab Codes

B.1 Calibration

Correct calibration of an image is the key to strong image analysis. Without it, data is
flawed and end results will be incorrect. Fortunately, the general process for correct
image calibration is widely understood: removal of the pixel value pedestal using dark
frames, and correction of optical anomalies using flat frames. However, more intricate
methodology must be put in place to achieve best calibration.

The following algorithm makes a master dark frame using a combination of multiple
individual frames. This algorithm also records any bad pixels found in any of the dark
frames. A “bad pixel” refers a pixel who has higher than average pedestal value. These
are likely issues with the CCD itself and must be accounted for in every image taken
(even data frames).

The master dark frame is subtracted from every light image used for analysis. No
flat frame was created for this thesis, but would likely improve calibration.

ChooseBin=input('Enter # for #x# binning images:\n');
Num_C=input('Enter the number of Dark Images desired:\n');
DarkCal=cell(1,Num_C);

if ChooseBin==2

for ii = 1:Num_C
DarkCal{ii}=fitsread(sprintf('alpha—%03ddark.fit"',ii));
end

elseif ChooseBin==4

for ii = 1:Num_C
DarkCal{ii}=fitsread(sprintf('alpha—%03ddark2.fit"',ii));
end

elseif ChooseBin==

for ii = 1:Num_C
DarkCal{ii}=fitsread(sprintf('alpha—%03ddark3.fit',ii));
end

else

fprintf('That is not an acceptable binning number! Try Again!\n')
end

% Form Master Dark
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[N_x, N_y] = size(DarkCal{1l});

HH=6;

D_master_sum=zeros(N_x,N_y);

for ii=1:Num_C
D_master_sum=D_master_sum+DarkCal{ii};
end

D_master=D_master_sum./Num_C;

D_STD=std(D_master(:));
D_Mean=median(D_master(:));
D_alpha=1;
B_pix=zeros(N_x,N_y);

% The following two loops look for pixels in each individual callibration
image to

% verify the presence of bad pixels, then removes them/notes their

% location.

for ii=1:N_x

for jj=1:N_y

if D_master(ii,jj)>D_Mean+D_alpha*D_STD

B_pix(ii,jj)=D_master(ii,jj);

%Number=Number+1;

end

end

end

for qg=1:Num_C

Mean_cur=mean(DarkCal{qq}(:));

STD_cur=std(DarkCal{qq}(:));

for ii=1:N_x

for jj=1:N_y

if B_pix(ii,jj)=>0

if DarkCal{qq}(ii,jj) > Mean_cur+D_alphaxSTD_cur

DarkCal{qq}(ii,jj)=0;

end

end

end

end

end

Avg_num=0;
Avg_tot=0;
S_mean=0;
D_STD=0;

% For every Cal image individually, the following searces for semi bad
% pixels, calculates the mean/std without their input, and makes note of
% their values.
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for qgq=1:Num_C

for ii=1:N_x

for jj=1:N_y

if DarkCal{qq}(ii,jj)~=0

Avg_tot=Avg_tot+DarkCal{qq}(ii,jj);

Avg_num=Avg_num+1;

end

end

end

MeanD=Avg_tot/Avg_num;

for ii=1:N_x

for jj=1:N_y

if DarkCal{qq}(ii,jj)~=0

S_mean=S_mean+(DarkCal{qq}(ii, jj)—MeanD)"2;

end

end

end

D_STD=sqrt(S_mean/Avg_num) ;

for ii=1:N_x

for jj=1:N_y

if DarkCal{qq}(ii,jj)>MeanD+D_alphaxD_STD

DarkCal{qq}(ii,jj)=MeanD;

end

end

end

for ii=1:N_x

for jj=1:N_y

if DarkCal{qq}(ii,jj)==0

DarkCal{qq}(ii, jj)=MeanD—HHxrand(1l,1)+(HH.*xrand(1,1)+HH.*rand(1,1).x*rand
(1,1));

end

end

end

Avg_num=0;

Avg_tot=0;

S_mean=0;

D_STD=0;

end

D2_alpha=1.5;

for gg=1:Num_C

for ii=1:N_x

for jj=1:N_y

if DarkCal{qq}(ii,jj)~=0
Avg_tot=Avg_tot+DarkCal{qq}(ii,jj);
Avg_num=Avg_num+1;

end
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end

end

MeanD=Avg_tot/Avg_num;

for ii=1:N_x

for jj=1:N_y

if DarkCal{qq}(ii,jj)~=0

S_mean=S_mean+(DarkCal{qq}(ii, jj)—MeanD)"2;

end

end

end

D_STD=sqrt(S_mean/Avg_num);

for ii=1:N_x

for jj=1:N_y

if DarkCal{qq}(ii,jj)>MeanD+D2_alpha*D_STD

DarkCal{qq}(ii,jj)=MeanD—HH*xrand(1,1)+(HH.*rand(1,1)+HH.*rand(1,1).x*rand
(1,1));

end

end

end

Avg_num=0;

Avg_tot=0;

S_mean=0;

D_STD=0;

end

% The following creates a final averaged dark callibration frame
D_master_sum=zeros(N_x,N_y);

for ii=1:Num_C

D_master_sum=D_master_sum+DarkCal{ii};

end

D_master=D_master_sum./Num_C;

B.2 Alpha Codes

The following are the Matlab codes used for track detection and analysis for « particle
tracks in the prototype TPC. The method of which is described in the text.

GG=0;

Im_max=input('Enter how many light images you have:\n');
for gg=1:Im_max
A=fitsread(sprintf('alpha—%03dlight.fit',qgg));
CC=fitsread('alpha—00ldark.fit");

o) o)
© ]

[N_x, N_y] = size(A);
A=A—D_master;
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CCD=CC—D_master;
STD=std(CCD(:));
Mean=mean (CCD(:));
alpha=3.3;

CR=23;

BB = zeros(N_x,N_y);
XsYs = zeros(N_x,N_y);

for ii=1:N_x

for jj=1:N_y

if B_pix(ii,jj)=>0

A(ii,jj)=—20 + (20+20).*rand(1,1);
end

end

end

% The following displays a scaled color image
sfigure
%simshow(A,[], 'Colormap',jet(255))

% Track Identification

% Creates a binary image of all pixels above a threshold value
for ii = 2:N_x-1

for jj = 2:N_y—-1

if A(ii,jj)>Mean+alphaxSTD

XsYs(ii,jj)=1;

else

XsYs(ii,jj)=0;

end

end

end

% Remove the edges from the image (we don't want any track that appears
too

% close to the edge).

EdgeR=15;

for ii=1:N_x

for jj=1:EdgeR

XsYs(ii,jj)=0;

end

end

for ii=1:N_x

for jj=N_y—EdgeR:N_y

XsYs(ii,jj)=0;

end
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end

for ii=1:EdgeR
for jj=1:N_y
XsYs(ii,jj)=0;
end

end

for ii=N_x—EdgeR:N_x
for jj=1:N_y
XsYs(ii,jj)=0;
end

end

% Find all connected pixels

CC = bwconncomp(XsYs);

XsYs2=XsYs;

A2=A;

numPixels = cellfun(@numel,CC.PixelIdxList);

% Now cycle through each connected pixels (tracks) to find information
% about each track.

for ww=1:length(numPixels)
XsYs=XsYs2;

A=A2;

B=0;

idx=ww;

for ii=1:length(numPixels)
if ii == idx

continue

end
XsYs(CC.PixelIdxList{ii}) = 0;
end

% Ignore small tracks

if sum(XsYs(:))<400
continue

end

% Ignore overlapping tracks
if sum(XsYs(:))>6000
continue

end

%imshow(XsYs)

% Remove any isolated pixels
for i1 = 2:N_x-1
for jj = 2:N_y—1
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if XsYs(ii+l,jj)==0 && XsYs(ii,jj+1)==0 && ...
XsYs(ii—1,jj)==0 && XsYs(ii,jj—1)==0
XsYs(ii,jj)=0;

end

end

end

% Intensity

% For all values in XsYs that a marked one, a correpsonding matrix assigns
% pixels values of A to itself: gives TOTAL intenstiy of the track.
Intense = zeros(N_x,N_y);

for ii = 1:N_x

for jj = 1:N_y

if XsYs(ii,jj)==

Intense(ii,jj)=A(ii,jj);

else

Intense(ii,jj)=0;

end

end

end

% The total pixel value of the image!
Intens_tot = sum(Intense(:));
Int_end=1000;

if Intens_tot<Int_end

continue %error('No Valid Track')

end

GG=GG+1;

% Find Curves In Track
% Bin the image order get the width of track to ~1 pixel, to easily show
% curve in track. Bin only in the x direction to maintain length.

[N_x, N_y] = size(A);

Xbin=6;

for ii = 1:N_x
qq=1;

for jj = 1:Xbin:N_y

BB(ii,qq)=XsYs(ii,jj)+XsYs(ii,jj+1)+XsYs(ii,jj+2)+XsYs(ii,jj+3)+XsYs(ii,jj
+4)+XsYs(ii,]jj+5);%+A(1ii,jj+6)+A(1i1i,]j+7);

%+A(ii,jj+8)+A(ii,jj+9)+A(ii,jj+10)+A(ii,jj+11);

qq=qq+1;

end

end

[BB_x, BB_y] = size(BB);
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for ii 1:BB_x
for jj = 1:BB_y
if BB(ii,jj)>0
BB(ii,jj)=1;
end

end

end

% Use a Hough Transform to identify lines on the binned image, as well as

% the start/end points of each line segment.

[H,theta, rho] = hough(BB);

P=houghpeaks(H,2, 'threshold',ceil(0.3xmax(H(:))));
x = theta(P(:,2));

y = rho(P(:,1));

lines = houghlines(BB,theta, rho,P, 'FillGap',5, 'MinLength',7);

%imshow(BB), hold on
max_1len=0;

% Remove tiny line that messes everything up
if length(lines)>2

for kk=1:length(lines)

ybad (kk)=1ines (kk).point2(2);
end

Ybad=min(ybad) ;

for kk=1:1length(lines)

if lines(kk).point2(2)==Ybad
break

end

end

lines(kk)=[1;

end

if length(lines)==
GG=G6G—1;

continue

end

for k = 1:1length(lines)
xy = [lines(k).pointl; lines(k).point2];

o°

plot(xy(:,1),xy(:,2),'LineWidth',2, 'Color', 'green');
Plot beginnings and ends of lines

o® o°

o°

plot(xy(2,1),xy(2,2),'x", 'LineWidth',2, 'Color', 'red');
end

plot(xy(1,1),xy(1,2),'x", " 'LineWidth',2, 'Color', 'yellow');
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hold off

if length(lines)==0

GG=GG—1;

continue

end

xy_3 = [lines(1).pointl; lines(1).point2];
xy_4 = [lines(2).pointl; lines(2).point2];
xy-1 = [xy_3(1) xy_4(1); xy_3(2) xy_4(2)];
Xy_2 = [xy_3(3) xy_-4(3); xy_3(4) xy_4(4)];

% With the start/end points of both lines — we can easily find the point

at
% which the lines intersect.

o o
< X
I n

diff(xy_2);
den = dx(1)x*dy(2)—dy(1)=*dx(2);

ua =
ub =

xi = xy_1(1)+uax*xdx(1l);
yi = xy_2(1)+uaxdy(1);

diff(xy_1); o%# Take the differences down each column

# Precompute the denominator

(dx(2) *(xy-2(1)—xy-2(3) )—dy(2) *(xy_1(1)—xy_1(3)))/den;
(dx(1)*(xy-2(1)—xy-2(3))—dy (1) *(xy_1(1)—xy_1(3)))/den;

simshow(A,[], 'Colormap',jet(255))

%hold on
%splot(xi,yi, " '*")

x = [0 length(A)];
y = [yi yi];
line(x,y)

% The intersection point of the

% substantial curve is detected.

[N_x, N_y] = size(A);
YBot=floor(yi);

if yi==Inf

GG=GG—1;

continue

end

if isnan(yi)==
GG=G6G—1;

continue

end

if yi<0

[row, colomn] = find(XsYs);
YBot = max(row);

two lines are taken to be the point that a
Remove all data below this point.
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end

if yi>length(A)

[row, colomn] = find(XsYs);
YBot = max(row);

end

if yi>size(XsYs,1)

[row, colomn] = find(XsYs);
YBot = max(row);

end

for ii YBot:N_x
for jj 1:N_y
XsYs(ii,jj)=0;

end

end

for ii = YBot:N_x
for jj=1:N_y
A(1i,j3)=0;

end

end

if yi==1

yi=2;

YBot=2;

end

Bottom=0;

for ii=1:N_y

if XsYs(YBot—1,ii)==1
Bottom=Bottom+1;

end

end
BotNum=round(Bottom/2);
for ii = 1:N_y

if XsYs(YBot—1,ii)==
break

end

end
BotMid=BotNum+ii—1;

% Find the highest y value
[row, colomn] = find(XsYs);
YTop = min(row);
YTop=YTop+8;

Toptop=0;

for ii=1:N_x

for jj=1:YTop
XsYs(jj,ii)=0;

end
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end
YTop=YTop+1;
for ii=1:N_y

if XsYs(YTop,ii)==
Toptop=Toptop+1;
end

end
TopNum=round(Toptop/2);
for ii = 1:N_y

if XsYs(YTop,ii)==
break

end

end
TopMid=TopNum+ii—1;

%imshow(XsYs)

hold on

% plot(BotMid,YBot, '*"')
% plot(TopMid,YTop, '*')
hold off

% We now have the (x,y) values of the middle of the top and bottom of the
% track. With this information, we can rotate the image so the track
% alligns with the y axis.

if sum(XsYs(:))==0

GG=GG—1;

continue

end

% Find distance between two points
Length=sqrt((TopMid—BotMid)"2+(YTop—YBot)"2);
if length(Length)==0

GG=GG—1;

continue

end

% Find X distance between the points
X_dist=abs(BotMid—TopMid) ;

% Find angle between the points

Ang = asin(X_dist/Length);

%rotate the image (Both XsYs2 and A)
Deg=57.2958+Ang;

if BotMid—TopMid<0

B = imrotate(A,Deqg);

elseif BotMid—TopMid>0

B = imrotate(A,—Deg);

else
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B=imrotate(A,Degq);

end

if BotMid—TopMid<0

BXsYs = imrotate(XsYs,Deg);
elseif BotMid—TopMid>0

BXsYs = imrotate(XsYs,—Deg);
else
BXsYs=imrotate(XsYs,Deg);
end
[B_x,B_y] = size(B);

% Now remove all data except a square in

for ii=1:B_x

BBB=0;

GGG=0;

for jj=1:B_y
BBB=BXsYs(ii,jj)+BBB;
if BBB>0O

GGG=11;

break

end

end

if GGG==1ii

break

end

end

BYTop=1ii;

BToptop=0;

for ii = 1:B_y

if BXsYs(BYTop,ii)==1
BToptop=BToptop+1;
end

end

BTopNum=round (BToptop/2) ;
BTopFind=0;

for ii = 1:B_y

if BXsYs(BYTop,ii)==
BTopFind=BTopFind+1;
end

if BTopFind==BTopNum
break

end

end

BTopMid=ii;
BOXtop=5;
BOXside=30;

the image that comtains the track
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for ii = 1:BYTop—BOXtop
for jj=1:B_x
B(ii,jj)=0;

end
end
for ii
for jj =
B(ii,jj)
end

end

for ii = 1:B_y

for jj = BTopMid+BOXside:B_x
B(ii, jj)=0;

end

end

1:B_y
1:BTopMid—B0Xside
=0;

% Add all values along the columns to find the width of the track.
Tot=sum(B);

Xs=1:1length(Tot);

% Fit a Gaussian to the data

f = fit(Xs.',Tot."', 'gaussl');

%splot(f,Xs,Tot)

%pause

% Calculates FWHM
FitCoef=coeffvalues(f);
c_i=FitCoef(3);
sigma=c_i/sqrt(2);
width=2xsqrt(2xlog(2))=*sigma;

% Store some data: this will be used in scatter plots later on. Note, here
% Length is the length of the cut track (curved removed).

FWHM=width';

Intensity=Intens_tot';

Length_list(GG)=Length;
Int_list(GG)=Intensity;
Ang_1list(GG)=Deg;
FWHM_1ist (GG)=FWHM;

if FWHM > 18
GG=GG—1;
continue

end

if Length < 20




Appendix B. Matlab Codes 34

GG=GG—1;

continue

end

if Deg>25
GG=GG—1;

continue

end

end
end

B.3 %°Fe Codes

The following are the Matlab codes used for track detection and analysis for ®Fe x-ray
tracks in the prototype TPC. The method of which is described in the text.

NumFE=input ('How many Fe55 images are there?\n');
Intens_tot=zeros(1,1);

SIZE = 20;

for gg=1:NumFE
A=fitsread(sprintf('fe55—%03dlightl.fit"',qgg)); %200 rn
CC=fitsread('fe55—001ldarkl.fit");

[N_x, N_y] = size(A);
A=A-D_master;

CCD=CC—D_master;
STD=std(CCD(:));
Mean=mean (CCD(:));
alpha=1.7;

XsYs = zeros(N_x,N_y);
XsYs2= zeros(N_x,N_y);
for ii=1:N_x

for jj=1:N_y

if B_pix(ii,jj)=>0
A(ii,jj)=0; %0

end

end

end

% The following displays a scaled color image
%simshow(A,[], 'Colormap',jet(255))

for i1 = 2:N_x—1

for jj = 2:N_y—-1

if A(ii,jj)>Mean+alphax*STD

XsYs(ii,jj)=1;

else
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XsYs(ii,jj)=0;
end

end

end

EdgeR=4;

for 1ii=1:N_x
for jj=1:EdgeR
A(ii,jj)=0;
end

end

for ii=1:N_x
for jj=N_y—EdgeR:N_y
A(ii,jj)=0;
end

end

for ii=1:EdgeR
for jj=1:N_y
A(ii, jj)=0;
end

end

for ii=N_x—EdgeR:N_x
for jj=1:N_y
A(ii,jj)=0;
end

end

% Remove any isolated pixels

for ii = 2:N_x—1

for jj = 2:N_y—-1

if XsYs(ii+l,jj)==0 && XsYs(ii,jj+1)==0 && ...
XsYs(ii—1,jj)==0 && XsYs(ii,jj—1)==0
%XsYs(ii+1l,jj+1)==0 && XsYs(ii—1,jj+1)==0 &&
%XsYs(ii+l,jj—1)==0 && XsYs(ii—1,jj—1)==0
XsYs(ii,jj)=0;

end

end

end

Ilabel = bwlabel(XsYs);

stat = regionprops(Ilabel, 'centroid');
XXX=zeros(length(stat),2);

%simshow(A,[]1); hold on; %—

for x = 1: numel(stat)
%splot(stat(x).Centroid(l),stat(x).Centroid(2),'ro'); %—
XXX(x, :)=[stat(x).Centroid(1l),stat(x).Centroid(2)];
end

%hold off

%simshow (XsYs)
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%pause
Intensities=zeros(length(XXX),1);
B=zeros(size(A));

for ii = 1:length(XXX(:,1))
XsYs2=bwselect (XsYs,XXX(ii, 1) ,XXX(ii,2),4);
if sum(XsYs2(:)) < SIZE

continue

end

for jj = 1:N_x

for qq = 1:N_y

if XsYs2(jj,qq)==
B(jj,aq)=A(jj,aq);

else

B(jj,qq)=0;

end

end

end

if sum(B(:))==

continue

end

if sum(B(:))>20000

continue

end

Intensities(ii)=sum(B(:));
Intens_tot(end+1l)=Intensities(ii);
if Intensities(ii)>1500
%imshow(XsYs2)

%sfigure

%imshow(A,[])

%pause

% Use this to show that most tracks above a certain int.

% fact two overlapping tracks.
end
end
end

figure
histogram(Intens_tot,60)

value 1is in
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