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Melt segregation, which is observed in lab experi-
ments and in natural samples, is the phenomenon
wherein partially molten rock in the upper man-
tle spontaneously organizes into melt-rich bands, or
lenses, when exposed to shear strain [Kohlstedt and
Holtzman, 2009]. The phenomenon appears to re-
duce the viscosity of the aggregate, and may do so
in an anisotropic manner. A comprehensive under-
standing of the effect this has on rock rheology would
be useful, especially in improving continuum models
of the Earth’s viscous deformation. We numerically
analyzed plane wave solutions of the linearized ver-
sions of the equations governing two-phase flow with
the aim of capturing maximal accuracy at the lowest
possible computational cost. We then attempted to
extend the methods used in this linear analysis to the
case of a uniformly random initial condition (RIC),
and found that the same methods in this case pro-
duced numerical instabilities. In ongoing work, we
simulate spontaneous strain-rate driven melt segre-
gation using the full nonlinear equations of motion.

1 Introduction

It has been well known for decades that many geolog-
ical and seismological phenomena can be explained
by the existence of lithospheric plates: relatively
rigid, nondeforming regions of Earth’s outer layers
that move independently. The relative velocities of
the plates are of the order of a few tens of millime-
ters per year. Moreover, a large fraction of all earth-
quakes and volcanic eruptions occur at plate bound-
aries, which are seen to be very narrow. However,
the physical mechanism responsible for the existence
of plates is still not known. While it used to be be-
lieved that oceanic lithosphere is brittle to enough
to break under convective stress, it has been found
that the lithosphere cannot undergo brittle failure
at depths exceeding 20km. However, the tectonic
plates are generally greater than 100km thick, and
so distributed failure mechanisms must be invoked
to explain the existence of lithospheric plates.

Continuum models have been successful at gener-
ating plates [Bercovici et al., 1969], [Tackley , 1998],
where the top cold thermal boundary layer produced
during thermal convection is not broken, but instead

weakens into narrow zones with lateral variations
in viscosity. A boundary layer with broad, strong,
slowly deforming regions (representing strong plate
interiors) separated by narrow zones of weak, rapidly
deforming material (representing plate boundaries)
is said to have high ”plateness,” and is considered
also to be physically realistic. Simulations including
rheological laws that involve self-amplifying viscosity
contrasts have shown great success in producing high
plateness, implying that physical processes that re-
sult in positive feedback of local weakness – referred
to as strain-rate weakening (SRW) rheologies – may
have had a hand in producing the tectonic plates.

Figure 1: Example of melt banding in experiment.
a) Sketch of the torsion sample, illustrating loca-
tions of radial and tangential sections. b) Tangen-
tial section of an olivine + mid-oceanic ridge basalt
(MORB) sample with melt segregation at wave-
lengths of several grains. c) Tangential section of
an olivine + chromite + MORB sample with wider
melt bands at longer wavelengths with higher melt
fractions [Holtzman et al., 2012]
.

One such promising feedback mechanism is the
process of melt band segregation. Rock in the upper
mantle may contain a small fraction (≤5% by vol-
ume) of a fluid/melt phase. The amount of fluid
present in the mantle by volume is equal to the
rock’s porosity, or melt fraction, φ. (Pores are al-
ways full of fluid, if they exist; there are no voids



Figure 2: Another example of melt banding in ex-
periment, with 4% volume of liquid-phase MORB
[Katz et al., 2006]
.

present in the rock at the pressures of the upper
mantle.) This fluid phase has very different ma-
terial properties from the rock in which it resides;
the densities of the respective phases can differ by
∆ρ ≈ 300 kg

m3 [Kohlstedt and Holtzman, 2009]. It has
been shown [Stevenson, 1989] that the molten rock
that penetrates the porous solid matrix of the upper
mantle, starting from a uniformly random distribu-
tion, spontaneously generates regular bands of high-
porosity regions when the partially molten aggregate
is sheared. This is because the melt flows into lower-
pressure regions, which are where melt has already
accumulated. Major effects on the local viscosity
characteristics of the rock ensue, both due to the
significant viscosity contrast of the rock’s respective
phases and the anisotropy created by the melt’s spa-
tial organization. We postulate that the effect there-
fore may have been instrumental in the formation of
tectonic plates, and are interested in quantifying the
effect’s rheological consequences as a means toward
preparing a full-scale continuum model simulation
employing it.

The following constitutes an analysis of melt seg-
regation’s basic features. Following [Spiegelman,
2003], we use linearized equations that govern the
process and studied the behavior of some simple lin-
ear solutions to the full equations.

2 Model and linear perturbation

The equations that govern the motion of the melt
phase of rock with respect to its solid phase, ignoring

the effect of gravity, are [Spiegelman, 2003]:

δφ

δt
+ ∇ · [φv] = 0 (1)

δ

δt
(1− φ) + ∇ · [(1− φ)V] = 0 (2)

φ(v −V) = −
kφ
µ

[∇P − ρfg] (3)

∇P = ∇ · η[(∇V) + (∇V)T ]

+ ∇(ζ − 2η

3
)∇ ·V) + ρ̄g (4)

Where v and V are respectively the melt and solid
velocity fields; φ is the porosity or melt fraction field;
P is the fluid pressure field; ρ̄ = φρf + (1 − φ)ρs is

the mean density (where ρf ≈ 2700 kg
m3 and ρs ≈

3000 kg
m3 ); kφ is the permeability, which is taken to

be a nonlinear function of the porosity; and µ, η and
ζ are the fluid viscosity (≈1 Pa s) and the solid’s
viscosities (≈ 1× 1019−23 Pa s).

These equations treat the solid and melt phases as
two interpenetrating fluids that have a large viscosity
contrast and which are both incompressible. Equa-
tions 1 and 2 respectively govern the conservation of
melt and solid mass. Equation 3 is the statement of
D’Arcy flow, a phenomenologically derived constitu-
tive relation governing the flow of fluid through a
porous medium, and Equation 4 is the conservation
of momentum.

These equations can be rewritten into the follow-
ing form, which is more suitable for computation:

δφ

δt
+ V ·∇φ = (1− φ)C (5)

C = ∇ ·
kφ
µ

[∇ · η[(∇V) (6)

+ (∇V)T ] + ∇(ζ − 2η

3
)C)

0 = ∇×∇ · η[(∇V) + (∇V)T ] (7)

where C = ∇ · V is the compaction rate of the solid
velocity field.

Equation 5 is an expansion of equation 2 and
shows how the quantity of melt at a point can
change: either it is advected there, or, in the case
where C 6= 0, the underlying solid matrix is de-
formed. Equation 6 is a combination of equations 1
through 4 which shows that the solid matrix changes
volume as a result of divergence of the melt flux,
which occurs only as a result of viscous deforma-
tion in the absence of gravitational force. Finally,
equation 7 is merely the curl of equation 4, and it



constrains the incompressible component of the flow
field.

We consider in this paper only the behavior of the
linearized equations–by replacing each field param-
eter with a constant plus an infinitesimal perturba-
tion, e.g. φ = φ0 + εφ1, ε � 1. After making this
substitution for all parameters, expressing the veloc-
ity field perturbation in terms of a compressible and
an incompressible component V1 = ∇× ~ψs1 + ∇U1,
and collecting terms of order ε, we find the following
set of equations for the perturbations after appropri-
ately nondimensionalizing [Spiegelman, 2003]:

δφ1
δt

+ y
δφ1
δx

= (1− φ0)C1 (8)

−∇2C1 = 2αξ
δ2φ1
δxδy

(9)

∇2U1 = C1 (10)

∇4 ~ψs1 = α(
δ2φ1
δx2

− δ2φ1
δy2

) (11)

where α is the first-order dependence of the viscosity
on the porosity. Negative values of α therefore cor-
respond to porosity weakening materials, the class
of materials presently under study, and large mag-
nitudes of α correspond to materials which have a
viscosity that is strongly dependent on porosity. Al-
though the precise functional form of the dependence
of matrix viscosity on porosity is not known–multiple
constitutive relations have been proposed, but none
have been confirmed–this phrasing of the equations
is independent of the functional form of the viscosity
η(φ).

We consider a setup of 2D simple shear–a box of
aspect ratio 4:1 is sheared along its top and bottom.
Periodic boundary conditions are enforced along the
left and right edges of the box, and in order to
keep the melt inside of the box, Neumann conditions
of δφ

δy = 0 are enforced along the top and bottom
boundaries. We impose constant shear strain across
the box, and we can therefore use the total strain as
a dimensional unit of time, i.e. t′ = ·γt.

3 Linear Perturbation I: Plane
Waves

The evolution of these equations is highly depen-
dent upon the initial conditions of the system. As
in [Spiegelman, 2003], we began by considering the
evolution of plane waves. At t=0, we assume that
the porosity is given by a plane-wave with a specified

orientation k0 (See figure 3a). Our justification for
doing so was that the existence of analytical solu-
tions of the plane-wave amplitude and wave-vector
allowed us to use this case as a benchmark for our
numerical solution.

Spiegelman’s linear analysis predicts that the
amplitude of plane-waves evolves as A(t) =

[1+k
2(0)

1+k2(t)
]−αξ(1−φ0), where k2(t) is the magnitude of

the wave’s wave-vector as a function of time. In the
case of simple shear, k(t) = k0xi + (k0y − k0xt)j, where
k0i denotes the initial value of the ith component
of the wave-vector. This means that, for α = 0, the
plane-wave amplitude shouldn’t evolve at all, but for
α 6= 0 the amplitude should grow while the waves
make less than a 90◦ angle with the horizontal and
shrink while the waves make more than a 90◦ angle
with the horizontal. Figure 4 gives a comprehensive
look at the behavior of the wave amplitudes as a
function of time and initial band angle.

a.

b.

c.

Figure 3: Evolution of a plane wave (α = 0) with an
initial wave-vector of [4.02π ,

5.0
2π ], after a total strain of

(respectively) 0, 1.25, and 2.4375.

Typical sets of output data are given in figures 3
and 5. A comparison of the plane-wave amplitude
at each point of total shear between our method and
this analytical solution is given in figure 6; the evolu-
tion is qualitiatively similar, with a maximum of 5%
error. However, our numerical solution is not sym-
metric, and reaches a maximum that is higher and
sooner in strain than what is analytically predicted.

Our plane waves exhibit slight curving as the so-
lution progresses; this is due mainly to the von Neu-
mann condition used. That condition is not ade-
quate because it artificially affects the shape of the
waves in an unphysical manner.



Figure 4: [Spiegelman, 2003] Plane wave amplitude
A(t, φ0) as a function of time (strain) and initial an-
gle for α = −1. Changing α only scales the magni-
tude of this image, not the angular dependence.

a.

b.

c.

Figure 5: Evolution of a plane wave (α = −1) with
an initial wave-vector of [4.02π ,

5.0
2π ], after a total strain

of (respectively) a. 0, b. 1.25, and c. 2.4375.

4 Linear Perturbation II: Ran-
dom Initial Conditions

We also considered the behavior of the linearized
equations when the initial condition was homo-
geneously random. The initial condition in this
case was produced by arbitrarily picking a reference
porosity, φ0 = .25, and adding uniform noise of am-
plitude < 1% of the reference porosity.

Allowing these equations to evolve did produce
banding, as has been predicted, but the total poros-
ity of the box grew exponentially over time (see fig-
ure 7). We expect that this effect is a result of the
linearization, since it is not observed in similar cal-

Figure 6: Comparison of numerical method to ana-
lytical solution of evolution of plane-wave amplitude
for α = −1.

culations involving a fully nonlinear treatment (see
figure 8). Moreover, the melt amplitude divergence
calls into question the ability of this set of equations
to accurately capture the dominant melt band angle;
while it is possible in theory that the wave-vector
of highest growth is different in the RIC case than
the plane-wave initial case, the band created in this
simulation did not evolve as has been proven that
melt bands should (its wave-vector was stationary
over time). It as such is probably some numerical
instability instead of a natural consequence of the
underlying physics.

5 Conclusion

We have evaluated the satisfactoriness of the lin-
ear form of the melt evolution equations for describ-
ing melt motion. They are lacking in key respects–
notably, the evolution of the random initial condi-
tion is unphysical. This implies /that the behavior
of rock rheology over time is influenced significantly
by forces of order higher than the first, meaning that
a full continuum model must include a nonlinear vis-
cosity function for numerical stability and accuracy.

6 Further Study

In light of the apparent weakness of the linear ap-
proach, it has been shown that we must implement
the nonlinear equations in order to faithfully sim-



a.

b.

c.

Figure 7: Evolution of random initial conditions
(α = −1) after a total strain of (respectively) a.
.0625, b. .6875, and c. 1.3125.

ulate the equations for arbitrary initial conditions.
This will allow us to handle the case of random ini-
tial conditions, and as such reliably quantify the ex-
tent of banding as a result of applied shear in nature.

Figure 8: The porosity from a numerical simulation
of the full nonlinear equations, using a power-law
relationship for the aggregate viscosity to porosity.
[Katz et al., 2006]

More realistic numerical models will allow us to
begin studying the way a representative volumetric
element of crustal rock changes in viscosity as a re-
sult of applied shear. The theory of Backus averag-
ing [Backus, 1962; Gelinsky , 1997] gives a theoreti-
cal basis for analyzing the rheological properties of
a medium that has been well organized into layers
of qualitatively different material: stress-strain rela-
tions are expressed as a full matrix, the components
of which depend on a parameterization relying on
layer porosity, permeability, and density, as well as
fluid viscosity, density, and bulk modulus. Organi-
zation of a partially molten aggregate into bands is
well characterized by a collection of layers that differ
only (but markedly) in porosity, and therefore den-

sity. This approach is more satisfying in many re-
spects than that which has already been used in this
regard; Holtzmann’s [Holtzman et al., 2012] “seg-
regation factor” formulation, for example, attempts
to characterize segregation as one parameter S that
varies between 0 and 1. Not only is S ill-defined as a
function of the spatial variable φ–it relies instead on
φb, the melt fraction in the bands, which one can-
not determine satisfactorily solely from the porosity
distribution–its effect on the rheology of the sample
is not clear. As such, there is still a need in the lit-
erature for a precise elucidation of the segregation
phenomenon’s effect on the properties of the rock
that exhibits it.

Once this has been accomplished, a full contin-
uum model of the Earth that incorporates this vis-
cosity effect may be built, and a theory of tecton-
ics as driven by melt segregation may be thoroughly
tested.
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