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Abstract  

Processes of melt generation and migration occurring at the lithosphere-asthenosphere 

interface in intra-plate regions (i.e., regions far from plate boundaries) have not received 

much attention by the geophysics community. We focus specifically on how variations in 

lithosphere thickness (undulations or roughness at the lithosphere-asthenosphere 

boundary) might control the transport of melt rising through the plate.  We investigated 

the flow of a viscous fluid into a deformable porous matrix through the use of finite 

element methods. Such methods were implemented using the software named ELMER 

which is an Open Source Finite Element Software for Multiphysical Problems 

(http://www.csc.fi/english/pages/elmer). We present a series of simulations that 

constitute a first-order approximation to melt-migration at intra-plate settings where 

irregularities in the lithosphere thickness are purported to occur, e.g., a region of thicker 

lithosphere under the Colorado Plateau in the western US. The formation of dynamic 

pressure gradients due to flow of the asthenosphere around protrusions in the 

lithosphere present a consistent pattern with low dynamic pressures at the upwind side 

of the protrusion and high dynamic pressures at the downwind side of the protrusion. 

Such pressure gradients can cause melt to accumulate at low-pressure regions and 

flow away from high-pressure regions, controlled by the geometry of the lithosphere-

asthenosphere boundary. Our simulations provide a first-order explanation for the 

observed lack of magmatic activity on the plateau and for the pattern of magmatic 

encroachment observed around certain margins of the Colorado plateau. This rather 

simple mechanism presented here might be more generally applicable in a number of 

settings and could be an important factor controlling the large scale distribution of melt 

at the Earth’s surface.    

http://www.csc.fi/english/pages/elmer


Table of Contents 

1. Introduction and background .......………………………………………………………… 1 

2. Model Setup and Assumptions …………………………………………………………… 7 

 2.1 Viscosity ………………………………………………………………………….. 11 

2.2 Aspect Ratio ……………………………………………………………………... 15 

3. Sinusoidal Irregularities at the Lithosphere-Asthenosphere Boundary …………...… 18 

4. Conclusion …………………………………………………………………..…………..… 22 

5. Suggestions for further work …………………………………………………………..… 22 

Acknowledgements ……………………………………………………………..…………… 22 

References ………………………………………………………………………………..….. 24 

 

Table1.Parameers and symbols………………………………………………………………2 
 

Figure 1: Mid-Ocean Ridge – Previous Work .................................................................. 4 
Figure 2: Colorado Plateau Observations. ...................................................................... 6 
Figure 3: Cartoon of the lithosphere below the Colorado Plateau. .................................. 7 
Figure 4: Cartoon showing geometry of our model. ........................................................ 9 
Figure 5: Plane Couette flow ......................................................................................... 10 
Figure 6: Couette flow in our model geometry.. ............................................................. 11 
Figure 7: Example of the model geometry for the case of a fine mesh.......................... 12 
Figure 8: Dynamic pressure field across a hemispherical protrusion ............................ 13 
Figure 9: Log-log plots of maximum dynamic pressure difference vs viscosity. ............ 13 
Figure 10: Streamlines, for changing asthenosphere viscosity ..................................... 14 
Figure 11: Geometries showing obstacle radii range. ................................................... 15 
Figure 12: Plots of dynamic pressure range vs radius................................................... 16 
Figure 13: Sinusoidally deformed lithosphere. .............................................................. 18 
Figure 14: Dynamic pressure field for sinusoidally shaped boundary. .......................... 19 
Figure 15: Plots of dynamic pressure vs Amplitude, wavelength and Distance from the 
box bottom  ................................................................................................................... 20 
Figure 16: Periodic melt distribution pattern. ................................................................. 21 
 
 
Appendix A: Elmer Solvers and Implementation…………………………………………...26 
Appendix B: Mesh Generation and Visualization………………………………………..…32 

file:///C:/Users/Rodrigo/Documents/UNM/PHYSICS/Physics_thesis/thesis_drafts/ROO_honors_thesis_draft_4.docx%23_Toc323000479
file:///C:/Users/Rodrigo/Documents/UNM/PHYSICS/Physics_thesis/thesis_drafts/ROO_honors_thesis_draft_4.docx%23_Toc323000480
file:///C:/Users/Rodrigo/Documents/UNM/PHYSICS/Physics_thesis/thesis_drafts/ROO_honors_thesis_draft_4.docx%23_Toc323000481
file:///C:/Users/Rodrigo/Documents/UNM/PHYSICS/Physics_thesis/thesis_drafts/ROO_honors_thesis_draft_4.docx%23_Toc323000482
file:///C:/Users/Rodrigo/Documents/UNM/PHYSICS/Physics_thesis/thesis_drafts/ROO_honors_thesis_draft_4.docx%23_Toc323000484
file:///C:/Users/Rodrigo/Documents/UNM/PHYSICS/Physics_thesis/thesis_drafts/ROO_honors_thesis_draft_4.docx%23_Toc323000486
file:///C:/Users/Rodrigo/Documents/UNM/PHYSICS/Physics_thesis/thesis_drafts/ROO_honors_thesis_draft_4.docx%23_Toc323000488
file:///C:/Users/Rodrigo/Documents/UNM/PHYSICS/Physics_thesis/thesis_drafts/ROO_honors_thesis_draft_4.docx%23_Toc323000489
file:///C:/Users/Rodrigo/Documents/UNM/PHYSICS/Physics_thesis/thesis_drafts/ROO_honors_thesis_draft_4.docx%23_Toc323000491
file:///C:/Users/Rodrigo/Documents/UNM/PHYSICS/Physics_thesis/thesis_drafts/ROO_honors_thesis_draft_4.docx%23_Toc323000492


1 
 

 
1. Introduction and Background 

Melt generation and segregation are fundamental processes in the formation of 

the Earth’s lithosphere1 (Spiegelman et. al. 2007), which nonetheless are not well-

understood. The process of melt segregation (motion of melt through a deformable 

matrix) has been typically modeled using the theory of two-phase flows; such theory 

incorporates “a set of conservation laws for mass, momentum and energy with 

phenomenological laws for fluxes of mass and heat” (McKenzie, 1984; Spiegelman, 

1993; Rudge et. al. 2011). Moreover the problem can be modeled as the flow of a “low-

viscosity fluid in a viscously deformable, permeable matrix” (Spiegelman 1993), where 

the low-viscosity fluid represents melt and the surrounding matrix represents rocks in 

either the asthenosphere or the lithosphere.  Melt segregation is defined here as motion 

of the melt that is independent of the motion of the permeable matrix. 

Two-phase flow is a well-studied problem and may include a number of 

processes that allow interaction between the melt and the matrix, namely, phase 

changes, chemical reactions, and time-dependent physical properties.  The starting 

point for these models is the so-called “McKenzie Equations”, which provide a 

fundamental framework for modeling magma migration (McKenzie, 1984).  In this 

formulation, appropriate for geophysical flows within the Earth, it is assumed that the 

porosity and melt-fraction are equal (no voids exist).  The equations are:  

                                                           
1 The lithosphere (or “plate”) is the mechanically strong, outer part of the Earth; it includes the 
crust and uppermost mantle and is a region where heat is transferred primarily by conduction; 
the asthenosphere is the flowing mantle beneath the lithosphere, where the dominant mode of 
heat transfer is convection. 
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(1)  
    
  

 ∇           

(2)  
        

  
 ∇                

(3)          
 

 
 ∇       

(4)                     ∇    
 

 
           

Here the first two equations arise from conservation of mass for the fluid and solid 

phases respectively. And we allow mass transfer through phase change by the term   

which is the crystallization rate (rate of mass transfer from solid to liquid). The third 

equation is a generalization of Darcy’s law2; this governs the separation of melt from 

solid. Finally equation four is conservation of momentum for the solid matrix; note that 

this form of the conservation of momentum is derived by modeling the solid matrix as a 

compressible, inertia-free viscous fluid3 (Spiegelman et al. 2007). Moreover, the solid 

pressure is divided into three components, namely P=Pl+P+P*. Here Pl is the lithostatic 

pressure given by  sgz for constant solid density, P is proportional to the divergence of 

the solid velocity field (when flow is incompressible, P=0) and P*, which contains all 

                                                           
2 Darcy’s law (which incidentally is not a law) defines the pressure gradient in a porous media to 
be  a linear function of the velocity difference between solid and fluid phases. As noted by A. 
Cemal Eringen it may only strictly hold for inviscid fluids, and so in our case it is only a linear 
approximation (Eringen, 2003).  
3 Notice that we talk of a solid matrix and a melt but we model both as fluids, although of vastly 
differing viscosities (e.g. the solid matrix has a viscosity 20 orders of magnitude greater than 
that of the melt). Hence, it is possible to apply the concepts of fluid mechanics to the whole 
system.  
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other contributions to pressure (e.g., due to viscous shear), is called the dynamic 

pressure (Spiegelman et. al. 2007).  

The variables are defined as follows: 

Table 1: Physical Parameters for two Phase Flow 
Variable Meaning Range of values used 

Φ porosity φ <<1 (low porosity limit) 
ρs Fluid density 2800 kg/m3 
ρf Solid density 3300 kg/m3 
V Fluid velocity field 10-9-2.4*10-7 m/s 
V Solid velocity field 1.6-9 m/s – 0 m/s 
  rate of mass transfer from solid to liquid 0 (no melting) 
Κ permeability 10-15 -10-12 m2 
Μ melt viscosity 1 Pa-s 
P Fluid pressure 3.249-4.2910 Pa-s 
G Acceleration due to gravity 9.82 m/s2 
Η Solid shear viscosity 1018-1025 Pa-s 
Ζ Solid bulk viscosity Incompressible matrix 

                  : mean density of the 
two phase system. 

Low porosity limit, hence 
About 3300 kg/m3 

Based on Spiegelman et al., 2007 and McKenzie, 1984 

In general two-phase flow refers to the situation where two phases of a 

substance coexist in a flow (such as in decompression melting and rising magma at a 

mid-oceanic ridge). There exist several analytical solutions to simple two-phase flow 

problems, specifically the case where the porosity (Φ), solid bulk viscosity ( ) and shear 

viscosity ( ) are constant and there is no melting ( =0).  In this case, the motion of the 

solid is that of an incompressible fluid and the only pressure-gradients in the system are 

gradients arising from viscous shear (first term in r.h.s. of Eqn. 4) and buoyancy (third 

term in r.h.s. of  Eqn. 4).  This set of assumptions was used to determine the trajectory 

of melt as it rises at a mid-ocean ridge where the separation of two plates is modeled as 

asymmetric corner-flow problem (Figure 1; Spiegelman 1993).   



4 
 

 

Our goal is to understand the implications of a similar two-phase flow problem in 

the case where melt segregation occurs at the edges of a region of thicker lithosphere. 

As a first-order approach, we follow from Spiegelman (1993) and assume that there is 

no melting, constant porosity, and that the incompressible flow of the solid will generate 

dynamic pressure gradients due to shear that will drive segregation of melt from the 

solid (Eqn. 3).  We start with an initial situation where melt is present in some uniform 

distribution (assumed constant, small porosity and constant permeability) in the 

asthenosphere as it flows past a step in the lithosphere.  Melt segregation is predicted 

to be greatest in regions of high pressure-gradients, such as the margins of the thicker 

lithosphere.  We will investigate whether regions with thicker lithosphere are therefore 

particularly prone to melt-extraction and magmatic activity at its margins.  If so, then this 

would explain enigmatic observations such as the pattern of Cenozoic magmatic activity 

Figure 1: Example of an analytical solution for melt segregation. Melt and solid flow fields for the special case 
of constant porosity, constant viscosity. Taken from (Spiegelman et. al 2007).  Solid flow (dashed lines) is given 
by corner flow solution (Batchelor, 2000) and the melt stream function (solid lines) are calculated from Eqn 3.  
The melt flows (solid lines) independently of the solid in this case. 
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surrounding the (thicker) Colorado Plateau region of the western US but a lack of 

magmatic activity within it (Figure 2). A primary target of this project is to explain the 

pronounced asymmetry in the pattern of melt-infiltration at the various margins of the 

Colorado Plateau.  The purple arrow in Figure 2a shows the direction of relative motion 

of the North American plate relative to the mantle beneath it (Silver and Holt, 2002).  In 

a reference frame stationary with respect to the Colorado Plateau, we would therefore 

expect the mantle to flow from SW to NE, although variations in lithosphere thickness 

along the way would locally disturb this flow.  The patterns of magmatic activity show 

highest rates of encroachment on the SW (or “upwind”) side of the plateau and no 

discernible encroachment on the NE (or “downwind” side of the plateau).  In this project 

we explore how variations in the geometry of the lithosphere-asthenosphere boundary 

may be controlling the observed magmatic patterns. 

A series of geophysical observations support the characterization of the Colorado 

Plateau as a region with a lithospheric thickness above that of the surrounding Great 

Basin. Findings by Sheehan et. al (1997) and also those by Zandt et al. (1995) based 

on seismic observations indicate a greater lithosphere thickness for the Colorado 

Plateau than for the surrounding Great Basin.  Moreover, although the patterns of 

magmatism have been explained by a variety of factors (such as preexisting lithospheric 

weaknesses, e.g. Crow et al. 2011), the idea of an anomaly in the lithosphere thickness 

and shape below the Colorado plateau is commonly found in the literature (see figure 

3).  
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a) 

 

 

 

 

 

 

 

b) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: (a) From Roy et al. 2009. Cenozoic magmatic patterns in the western USA showing magmatic encroachment 
onto the Colorado Plateau. The arrow indicates the direction of the velocity of the Colorado plateau relative to the 
earth’s core reference frame. (b) From Roy et al. 2009. Cenozoic magmatic patterns in the western USA showing 
magmatic encroachment onto the Colorado Plateau. a Distribution of Cenozoic volcanic rocks in the NAVDAT 
database with age uncertainties less than 5 Myr, color-coded by azimuth relative to the Four Corners point. Error 
bars indicate the minimum and maximum reported ages for a particular sample. Locations do not include structural 
reconstruction (e.g., in highly-extended regions), which is not a great source of error in undeformed regions such as 
the CP (outlined). b Igneous rock age as a function of distance from Four Corners, color-coded by quadrant as in (a). 
The dashed lines illustrate the encroachment of the onset of magmatism onto the plateau at the NW, SE, and SW 
margins at the rates indicated. 



7 
 

 

 

 

 

 

 

 

 

Nonetheless the idea that the driving mechanism behind the asymmetric 

distribution of melt around the Colorado Plateau could be the pressure gradients 

generated by the flow of the asthenosphere around an irregular region of the lithosphere 

has not received much attention. Such an idea could easily extend to a variety to 

intraplate settings where there exists a characteristic roughness at the lithosphere 

asthenosphere boundary that controls the supply and migration of melt to the Earth’s 

surface.  

 

 

 

 

Lithosphere 

Figure 3: : Cartoon showing the Lithosphere Asthenosphere Boundary (LAB) at the present day, along with 
geologic evolution of the lithosphere beneath the Colorado Plateau. From Crow et al 2011. 
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2. Model Setup and Assumptions  

We can model the flow of magma below a protrusion in the lithosphere by defining 

two regions with differing mechanical properties. Although the problem is intrinsically 

three dimensional we develop a two dimensional model with the objective of finding the 

main effects of changing the geometry and mechanical properties of both materials 

(lithosphere and asthenosphere). Clearly treating the problem in the full three 

dimensions increases the computational demand of the simulations considerably. 

Moreover we assume that both layers have homogeneous density and viscosity.     

On geologic timescales (> 104 years) both the lithosphere and the asthenosphere 

below it can be considered fluids of very high viscosity (above 1018 Pa-s), with the 

lithosphere having a greater viscosity than the asthenosphere. As outlined above, we 

assume that the porosity (), solid bulk viscosity ( ) and shear viscosity ( ) are constant 

and there is no melting ( =0).  In this case, the motion of the fluids representing the 

lithosphere and the asthenosphere is incompressible. All of these assumptions enable 

the use of the incompressible Navier-Stokes equation for solid flow. Moreover these 

assumptions allow us to get the relative motion of the melt and solid by equation 3 with 

P =  sgz+P*. 

Thus we define a 1000m by 1000km square region with an obstacle at the top as 

our model domain (Figure 4). We assume that the top boundary is at a depth of 100km 

right at the average depth of the lithosphere-asthenosphere boundary. Moreover we 

establish periodic boundary conditions at the left and right edges of our box; this means 

that the values for pressure and velocity on one end are the same as those at the 
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opposite end, a situation which is equivalent to having an infinite series of identical 

boxes lying side by side (in the horizontal direction). Such an assumption may be 

justified as we consider a region of the plate which is far from any mid ocean ridges or 

subduction zones. Furthermore in these simple models we utilize a local reference 

frame with rectangular coordinates even though a length of a thousand kilometers at a 

hundred kilometer depth on earth would span an arc of 9.13 degrees (where the radius 

of the earth at the crust surface is 6378.1 km).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, to generate dynamic pressure gradients we need the asthenosphere to 

flow in a prescribed manner. A simple way to achieve this is to start with Couette flow 

driven by the relative motion of two parallel planar walls.  In our case, one of them is 

held stationary (the top boundary) and the other moves at a constant velocity (the 

bottom boundary, representing deeper mantle circulation). Under these assumptions, all 

velocities in our models are relative to a stationary top plate.  With no-slip boundary 

Figure 4: Cartoon of the basic geometry of our model (box with blue arrows 
showing the top and bottom boundaries of the model) and its position relative 
to the layers of the earth. Background taken from 
http://www.britannica.com/EBchecked/topic/343783/lithosphere.  

Horizontal distances not to scale. 
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conditions one can easily find a steady state solution to the incompressible Navier 

Stokes equation: 

(5)     
  

  
    ∇      

For plane Couette flow of an isoviscous fluid between planar walls we get:  

(6)       
  

  
 

 

Figure 5: Plane Couette flow. From 
http://www.student.math.uwaterloo.ca/~amat361/Fluid%20Mechanics/topics/laminar_flow.htm 

 

Thus we see that we get a linear velocity profile. In all of our cases (which are not 

isoviscous) we could recover Couette flow by setting material properties inside the 

obstacle and outside of it to be equal (see figure 5). In our models we set the bottom 

boundary to move at a constant velocity of 5 cm/yr (~1.6e-9 ms-1), comparable to rates 
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of motion of North America relative to the mantle beneath it as inferred from seismic 

anisotropy and GPS data (Silver and Holt, 2002). 

 

 

2.1 Viscosity 

We investigate the effects of increasing the “rigidity” of the asthenosphere 

underlying the lithospheric obstacle by varying the viscosity parameter () in both the 

lithosphere and the asthenosphere. For this purpose we define our lithosphere obstacle 

to be a semicircle in the middle of the box with a radius of 100 km; hence the whole 

diameter of our obstacle represents 20% of the box’s length (see figure 6). Moreover we 

Figure 6: couette flow. We clearly observe the linear profile characteristic of couette flow. 
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define the densities of both bodies to be 3300 kgm-3 for all of our calculations. We 

performed calculations with viscosities ranging from 1e18 Pa-s to 1e25 Pa-s (see table 

above). These values for viscosities fall within the ranges estimated by Billen (2005) for 

Newtonian and non-Newtonian rheologies of the mantle.   

 

 

 

 

 

 

 

 

Figure 7: Example of the model geometry for the case of a fine mesh. The two bodies are colored by their 
viscosity (he region with the color gradient is just a result of an interpolation done by our imaging software). 
The mesh element-edges appear as black lines. Distance between nodes is about 10km. In this case, the 
obstacle (red) region is a factor 10X more viscous than the surrounding asthenosphere (blue). 

 

The main feature observed is that the flow of the more viscous material 

generates dynamic pressures whose absolute values are symmetric about the obstacle 

and with opposite signs, with the low pressures in the upwind side and the high 

pressures in the downwind side (figure 8). Moreover we observe a linear relationship 

between the asthenosphere viscosity and the maximum dynamic pressure range, but no 

correlation between the lithosphere viscosity and the dynamic pressure range (figure 9).  
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a) 

 
b)

 
Figure 9: Log-log plots of maximum dynamic pressure difference (in Pa) vs asthenosphere viscosity (in Pa-
s); (a) and vs lithosphere viscosity (in Pa-s);(b). The fit in (a) was performed using the Microsoft Excel built-in 
fitting function. 

Provided that the permeability is non-zero but constant, such dynamic pressure 

gradients will drive the flow of melt within the solid matrix (meaning both the lithosphere 

y = 2E-14x 
R² = 0.9955 

1.00E+04 

1.00E+05 

1.00E+06 

1.00E+07 

1.00E+08 

1.00E+09 

1.00E+10 

1.00E+11 

1.00E+17 1.00E+18 1.00E+19 1.00E+20 1.00E+21 1.00E+22 1.00E+23 1.00E+24 

m
ax

 d
el

ta
Pd

yn
(P

a)
 

asthenosphere viscosity (Pas)  

visc_li = 1e25 

visc_li = 1e24 

visc_li = 1e23 

visc_li = 1e22 

Linear (visc_li = 1e25) 

1.00E+04 

1.00E+05 

1.00E+06 

1.00E+07 

1.00E+08 

1.00E+18 1.00E+19 1.00E+20 1.00E+21 1.00E+22 1.00E+23 1.00E+24 1.00E+25 

m
ax

de
lta

Pd
yn

 (P
a)

 

lithosphere viscosity (Pas) 

asth_visc = 1e18 

asth_visc = 1e19 

asth_visc = 1e20 

asth_visc = 1e21 

Figure 8: Dynamic pressure field across a hemispherical protrusion. 
Dynamic pressures are in Pa. 
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and asthenosphere) according to equation 4 in such a way that melt is concentrated 

near the low-pressure, upwind border of the obstacle and driven away from the high-

pressure downwind side of the obstacle (see figure 10). The upward movement of the 

melt is dominated by the buoyancy due to the difference in density between the two 

phases (we assume the melt to be less dense than the solid, as observed in laboratory 

experiments and also consistent with the observation of magma rising to the surface). 

Clearly the lower the density of the melt the greater it will be its tendency to rise, thus 

the greater the dynamic pressures required to have streamlines deviating from straight 

vertical paths.  

a) 
 
 
 
 

 

 

b) 
 
 

 

 

 

Figure 10: Streamlines, for asthenosphere viscosity 1e21 Pa-s (a) and 1e22 Pa-s(b). In both cases the 
melt density is set to be 2800 kgm-3 and the lithosphere viscosity to be 1e25 Pa-s. Notice that raising 
the asthenosphere viscosity by an order of magnitude also. Dynamic pressures are in Pa.  
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2.2 Aspect Ratio 

Besides changing the material properties of the two bodies it would be 

reasonable to expect that the streamlines followed by melt through the lithosphere and 

the asthenosphere might depend on the geometry of our protrusion in the lithosphere. 

Indeed the Navier-Stokes equation (equation 5) gives us reason to think that this is so 

since the derivatives of the pressure depend on the derivatives of the velocity (and we 

consider the low viscosity asthenosphere flowing around the lithosphere). An easy 

parameter to vary, considering our geometry above, is the radius of our semicircular 

obstacle (Figure 11). Thus we fixed the lithosphere viscosity to be 1e25 Pa-s and the 

asthenosphere viscosity to be 1e22 Pa-s, and we varied the radius of our obstacle to be 

between 50 km and 475 km (see figure 12 below).  Typical dimensions of the Colorado 

Plateau region for example would imply an equivalent “radius” of about 300-400 km. 

Figure 11: variation in radius. The bodies are colored by viscosity. 



16 
 

 

 
Figure 12: Plots of dynamic pressure range (Pa) and radius (m) of the semi-circular protrusion for radii 
ranging from 50km to 475km (up) and for radii ranging from 50km to 200km (down). The curve-fitting was 
done using MATLAB’s curve-fitting toolbox. 

 

We do not observe a clear correlation between the size of the obstacle and the 

dynamic pressure ranges. Nonetheless there seems to be a relation that breaks down 

after the size of the obstacle surpasses a certain threshold (in our case r = 2e5 m, or 

20% of our box length). Below this threshold the dynamic pressure gradients seem to 

be a polynomial function of the protrusion’s radius (see figure 12 below).  
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We can consider three main factors that will affect the dynamic pressure 

gradients while varying the radius of our obstacle: the length of the path of a particle 

flowing past the obstacle, the proximity of the obstacle to the left and right boundaries 

and the obstacle’s proximity to the bottom. We would expect that a longer path around 

the obstacle would imply steeper velocity gradients and therefore increased shear 

stress, leading to higher dynamic pressures. Thus as we remain far from the edges we 

observe an increase in dynamic pressures with increasing obstacle size. Nonetheless, 

as we get closer to the boundaries the other contributions become noticeable. We 

would expect that getting closer to the bottom (which is driving the flow) would lead to 

greater velocity gradients at the lithosphere-asthenosphere boundary (although not 

necessarily a greater velocity at the boundary. We can think of this in terms of the 

Couette flow; in the case of Couette flow bringing the two plates closer together does 

not change the velocity at those plates but it does change the velocity gradient in the y 

direction (see equation 6). Moreover reducing the distance between the lithosphere-

asthenosphere and the bottom of our box is somewhat analogous to reducing the 

distance between the two plates in the Couette flow. Thus we would expect a local 

increase in the velocity gradient as the obstacle gets closer to the bottom, which in turn 

would increase the shearing rate. On the other hand it is not all too clear what the effect 

of getting closer to the boundary will be, but we can conjecture that as the edges of the 

obstacle get closer to the edges of our box we are basically making a region of high 

pressure (at the downwind side of the obstacle) get closer to a region of low pressure 

(at the upwind side of the “image” obstacle implied by periodicity).  
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3. Sinusoidal Irregularities at the Lithosphere-Asthenosphere Boundary  

In order to investigate the effects of obstacle size and inter-obstacle proximity 

more systematically, we consider a sinusoidally deformed lithosphere-asthenosphere 

boundary (see figure13). Thus we related the values of the wavelength and amplitude of 

a cosine function to the values for the dynamic pressure.  

Note that our models use quasi-sinusoidal 

boundaries rather than true sinusoids, for we 

defined a set of points in the mesh which 

were generated by a cosine function and 

then joined them using a smooth spline.  

The distribution of low- and high-pressure 

regions described above for the case of the 

single obstacles is reproduced in this case 

for the local peaks (see figure 13). Moreover 

we observe that the dynamic pressure 

ranges increase linearly with increasing 

amplitude as well as with decreasing 

wavelength (see figure 14). Note that we consider only integer number of wavelengths 

in our domain since as stated above we enforce periodic boundary conditions at the 

edges, thus a non-integer number of wavelengths would lead to the geometry at the 

Figure 13: we consider the effect of a sinusoidally deformed 
lithosphere. Here the two layers are colored by viscosity 
(red is the high viscosity lithosphere and blue is the lower-
viscosity asthenosphere). 
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boundary not being periodic. Moreover we observed an increase in the dynamic 

pressure ranges with decreasing distance of the boundary to the bottom of the domain 

(see figure 15). This is expected since, for incompressible flow, the asthenospheric fluid 

must be driven at high velocities through the gap between the obstacle and the bottom 

boundary. 

 

 

 

 

 

 

 

 

 

 

Thus we can characterize a roughness scale over which melt streamlines (with 

melt of a prescribed density) will deviate from vertical and thus create patterns of melt-

focusing and lack of melt at the surface (see figure 16).  

 

Figure 14: Dynamic pressure field for sinusoidally shaped boundary with 
wavelength equal to one fifth of our box's length. Dynamic pressures in Pa. 
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Figure 15: Plots of dynamic pressure range in Pa vs (a) Amplitude in meters (b) Wavelength in meters (c) 
Distance from the box bottom in meters. 

 

General model Power1: f(x) = a*x^b 
Goodness of fit: 
 SSE: 1.911e+013 
 R-square: 0.9977 
 Adjusted R-square: 0.997 
 RMSE: 2.524e+006 

Linear model Poly1: f(x) = p1*x + p2 
Goodness of fit: 
SSE: 2.291e+013 
R-square: 0.9942 
Adjusted R-square: 0.9928 
RMSE: 2.393e+006 

(c) 

(b) 

(a) 
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Figure 16: Periodic melt distribution pattern arising from a sinusoidal lithosphere asthenosphere boundary 
with wavelength equal to one fifth of the box length. Dynamic pressures are in Pa. 

 

4. Conclusion 

Our simulations show a consistent pattern of melt distribution that arises when a 

fluid of very high viscosity flows around an obstacle of higher viscosity. To the first order 

this pattern offers an explanation that links deep earth processes (i.e. processes 

occurring at the asthenosphere-lithosphere boundary) to observations of melt 

distribution at the surface. It is worthwhile noticing that such patterns arise for a wide 

range of viscosities, geometries and melt densities.  

 The results of our simulations are consistent with the observations of magmatic 

encroachment around the Colorado Plateau (Figure 2). Indeed the noticeable 

asymmetry of magmatic encroachment rates between the southwest and northeast 

margins could be explained by our results since the observed velocity of the Colorado 

plateau relative to the mantle is towards the southwest (figure 2a). Hence we can say 

that the asthenosphere is flowing to the northeast in the Colorado Plateau reference 
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frame. In such a frame we observe low magmatic encroachment in the downwind side 

of the Colorado Plateau (the northeast margin) and high magmatic encroachment rates 

in the upwind side (the southwest margin, see figure 2). Moreover we see that the 

margins that are closer to being parallel to the asthenosphere flow (northwest and 

southeast margins) show lower magmatic encroachment rates than the upwind side of 

the plateau.  

5. Suggestions for further work 

The work performed for this senior thesis focused on a toy model which used 

many simplifying assumptions. Further work should incorporate a series of extensions 

to this idea which bring the model closer to reality. Thus future work may include 

variable densities, viscosities and other mechanical parameters (such as bulk and shear 

modulus). Also it would be relevant to incorporate the effect of phase changes and 

having a compressible matrix (this will allow for a contribution from the divergence of the 

solid flow field to pressure-gradients; second term in Eqn. 4).  

Furthermore this works naturally extends to the three dimensional case. Such an 

extension could consider performing the calculations in a spherical coordinate system 

and with boundary conditions which reflect the finiteness of the plates. Also more 

general large scale patterns of volcanism, for example at the Ring of Fire – the system 

of subduction zones at the edges of the Pacific Ocean, could be studied based on the 

principle that the distribution of melt at the boundary is determined by processes taking 

place at the lithosphere asthenosphere boundary.  
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Appendix A: Elmer Solvers and Implementation 

Our simulations were performed using finite element methods implemented in 

the software package developed by the Finnish CSC - IT Center for Science. This is 

an multiplatform open source package which can be acquired at 

http://www.csc.fi/english/pages/elmer. This package utilizes a set of PDE solvers for 

solving Multiphysical problems. In this appendix we consider the most relevant 

solvers used for preparing this honors thesis as well as the solver input files (.sif) in 

which the description of the problem, solvers and methods are given. We used 

solvers for the Navier-Stokes and heat equations as well as a “flux-solver for 

computing pressure gradients.  

  The Elmer solver for the heat equation uses energy conservation as well as 

Fourier’s law of conduction. This solver was coupled to the fluid flow solver by 

convection (Elmer Models Manual 2011). Initial conditions defined a higher initial 

temperature (1573 K) for the asthenosphere than for the lithosphere (1073 K). Also, 

the initial velocity field was zero for both bodies.   

 Elmer’s flow solver was used to calculate the pressure and velocity fields 

using the incompressible Navier Stokes equation coupled to the heat equation by 

convection. Finally the flux solver was used to compute pressure gradients.  

 The values obtained are the result of transient calculations for time steps of 

the order of 105 years.  

 The results were visualized both in Paraview (after writing the results to VTK 

file format) and in the Elmer postprocessor module.  

 

http://www.csc.fi/english/pages/elmer
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Sample SIF file 

Header 
  CHECK KEYWORDS Warn 
  Mesh DB "." "." 
  Include Path "" 
  Results Directory "" 
End 
 
Simulation 
  Max Output Level = 4 
  Coordinate System = Cartesian 
  Coordinate Mapping(3) = 1 2 3 
  Simulation Type = Transient 
  Steady State Max Iterations = 2 
  Output Intervals = 1 
  Timestepping Method = BDF 
  BDF Order = 1 
  Timestep intervals = 2 
  Timestep Sizes = 3e12 
  Solver Input File = case.sif 
  Post File = case.ep 
End 
 
Constants 
  Gravity(4) = 0 -1 0 9.82 
  Stefan Boltzmann = 5.67e-08 
  Permittivity of Vacuum = 8.8542e-12 
  Boltzmann Constant = 1.3807e-23 
  Unit Charge = 1.602e-19 
End 
 
Body 1 
  Target Bodies(1) = 2 
  Name = "Body 1" 
  Equation = 1 
  Material = 1 
  Body Force = 1 
  Initial condition = 1 
End 
 
Body 2 
  Target Bodies(1) = 1 
  Name = "Body 2" 
  Equation = 1 
  Material = 2 
  Body Force = 1 
  Initial condition = 2 
End 
 
Solver 3 
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  Equation = Flux and Gradient 
  Flux Coefficient = 1 
  Target Variable = Pressure 
  Procedure = "FluxSolver" "FluxSolver" 
  Enforce Positive Magnitude = True 
  !Calculate Flux = True 
  Calculate Grad = True 
  Calculate Grad Magnitude = True 
 ! Calculate Flux Magnitude = True 
  Exec Solver = Always 
  Stabilize = True 
  Bubbles = False 
  Lumped Mass Matrix = False 
  Optimize Bandwidth = True 
  Steady State Convergence Tolerance = 1.0e-5 
  Nonlinear System Convergence Tolerance = 1.0e-8 
  Nonlinear System Max Iterations = 20 
  Nonlinear System Newton After Iterations = 3 
  Nonlinear System Newton After Tolerance = 1.0e-3 
  Nonlinear System Relaxation Factor = 1 
  Linear System Solver = Iterative 
  Linear System Iterative Method = BiCGStab 
  Linear System Max Iterations = 500 
  Linear System Convergence Tolerance = 1.0e-8 
  Linear System Preconditioning = ILU0 
  Linear System ILUT Tolerance = 1.0e-3 
  Linear System Abort Not Converged = False 
  Linear System Residual Output = 1 
  Linear System Precondition Recompute = 1 
End 
 
Solver 1 
  Equation = Navier-Stokes 
  Procedure = "FlowSolve" "FlowSolver" 
  Variable = Flow Solution[Velocity:2 Pressure:1] 
  Exec Solver = Always 
  Stabilize = True 
  Bubbles = False 
  Lumped Mass Matrix = False 
  Optimize Bandwidth = True 
  Steady State Convergence Tolerance = 1.0e-5 
  Nonlinear System Convergence Tolerance = 1.0e-8 
  Nonlinear System Max Iterations = 20 
  Nonlinear System Newton After Iterations = 3 
  Nonlinear System Newton After Tolerance = 1.0e-3 
  Nonlinear System Relaxation Factor = 1 
  Linear System Solver = Iterative 
  Linear System Iterative Method = BiCGStab 
  Linear System Max Iterations = 500 
  Linear System Convergence Tolerance = 1.0e-8 
  Linear System Preconditioning = ILU0 
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  Linear System ILUT Tolerance = 1.0e-3 
  Linear System Abort Not Converged = False 
  Linear System Residual Output = 1 
  Linear System Precondition Recompute = 1 
End 
 
Solver 2 
  Equation = Heat Equation 
  Procedure = "HeatSolve" "HeatSolver" 
  Variable = -dofs 1 Temperature 
  Exec Solver = Always 
  Stabilize = True 
  Bubbles = False 
  Lumped Mass Matrix = False 
  Optimize Bandwidth = True 
  Steady State Convergence Tolerance = 1.0e-5 
  Nonlinear System Convergence Tolerance = 1.0e-8 
  Nonlinear System Max Iterations = 20 
  Nonlinear System Newton After Iterations = 3 
  Nonlinear System Newton After Tolerance = 1.0e-3 
  Nonlinear System Relaxation Factor = 1 
  Linear System Solver = Iterative 
  Linear System Iterative Method = BiCGStab 
  Linear System Max Iterations = 500 
  Linear System Convergence Tolerance = 1.0e-8 
  Linear System Preconditioning = ILU0 
  Linear System ILUT Tolerance = 1.0e-3 
  Linear System Abort Not Converged = False 
  Linear System Residual Output = 1 
  Linear System Precondition Recompute = 1 
End 
 
Solver 4  
  Exec Solver = String "after timestep"     
  exec interval = 1  
  Procedure = File "SaveData" "SaveMaterials"  
  Parameter 1 = String "Density"  
  Parameter 2 = String "Viscosity"  
  Parameter 3 = String "Dynamic"  
  Parameter 4 = String "Total_p"  
End  
 
Equation 1 
  Name = "nav_stokes heat flux mesh" 
  Active Solvers(4) = 3 1 2 4 
End 
 
 
Material 1 
  Name = "lithosphere" 
  Reference Temperature = 1573 
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  Viscosity = 1e25 
  Heat expansion Coefficient = 2.5e-5 
  Heat Conductivity = 3 
  Heat Capacity = 1000 
  Density = 3300 
  Compressibility Model = Incompressible 
 
  Total_p = Variable Pressure, Density 
  Real MATC "2.00691e10+ tx(1)*9.82*100e3 + tx(0)" 
  Dynamic = Variable Total_p, Density, Coordinate 2 
  Real MATC "tx(0) + tx(1)*9.82*(tx(2)-1100e3)" 
 
End 
 
Material 2 
  Name = "asthenosphere" 
  Reference Temperature = 1573 
  Viscosity = 1e22 
  Heat expansion Coefficient = 2.5e-5 
  Heat Conductivity = 3 
  Heat Capacity = 1000 
  Density = 3300 
  Compressibility Model = Incompressible 
   
  Total_p = Variable Pressure, Density 
  Real MATC "2.00691e10+ tx(1)*9.82*100e3 + tx(0)" 
  Dynamic = Variable Total_p, Density, Coordinate 2 
  Real MATC "tx(0) + tx(1)*9.82*(tx(2)-1100e3)" 
 
End 
 
Body Force 1 
  Name = "hydrostatic pressure" 
  Hydrostatic pressure = True 
End 
 
Initial Condition 1 
  Name = "InitialCondition 1" 
  Velocity 2 = 0 
  Velocity 1 = 0 
  Temperature = 1073 
  Velocity 3 = 0 
End 
 
Initial Condition 2 
  Name = "InitialCondition 2" 
  Velocity 2 = 0 
  Velocity 1 = 0 
  Temperature = 1573 
  Velocity 3 = 0 
End 
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Boundary Condition 1 
  Target Boundaries(1) = 1 
  Name = "inlet" 
End 
 
Boundary Condition 2 
  Target Boundaries(1) = 2 
  Name = "bottom move" 
  Velocity 3 = 0 
  Velocity 1 = 1.6e-9 
  Velocity 2 = 0 
  Temperature = 1573 
End 
 
Boundary Condition 3 
  Target Boundaries(1) = 3 
  Name = "outlet" 
  Periodic BC Velocity 3 = True 
  Periodic BC Pressure = True 
  Periodic BC Velocity 1 = True 
  Periodic BC = 1 
  Periodic BC Velocity 2 = True 
End 
 
 
Boundary Condition 5 
  Target Boundaries(1) = 4 
  Name = "interphase" 
  Temperature = 1573 
End 
 
Boundary Condition 6 
  Target Boundaries(1) = 7 
  Name = "dome top" 
  Noslip wall BC = True 
End 
 
 
Solver 5 ! Set the correct solver number here.  
              ! Usually you want to use the highest number so the results are saved at the end of a 
timestep.  
  Exec Solver = String "after timestep"     
  exec interval = 1  
  Equation = String "ResultOutput"  
  Procedure = File "ResultOutputSolve" "ResultOutputSolver"  
  Output File Name = String "paraver_cos_wave_5_A." !or any other output file name of your 
choice  
  Output Format = String "vtk"  
  Vtk Format = Logical True  
End  
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Appendix B: Mesh Generation and Visualization 

We created all of our meshes using the program Gmsh (copyright (C) 1997-2011 

by C. Geuzaine and J.-F. Remacle). This allows the creation of meshes with triangular 

elements based on the user definition of bodies and boundaries. Bodies are sets of 

nodes within the mesh to which a set of material parameters can be assigned. Gmsh 

generates meshes and writes them in the .msh format, which besides headings includes 

a list with the coordinates for each of the mesh nodes and a list with the relations 

between nodes that define the mesh elements.  

Such files were converted to a set of files that served as an input into the elmer 

solver (thus generating four files). For this purpose the mesh generation and 

manipulation utility program ElmerGrid was used. Moreover Elmergrid allowed us to 

improve our meshes by its capability to get rid of superfluous nodes which are not used 

in any element.  

Such meshes served as the input geometries for the elmer solver application 

through which we defined the attributes of the problem and obtained numerical solutions 

using robust algorithms. We employed the following solvers: heat equation solver, 

Navier-stokes equation solver and the flux-solver (see Appendix A on Elmer).  

Finally the results were outputted to vtk files to be viewed and analyzed in the 

open source visualization application Paraview developed by Kitware, Sandia National 

Labs and CSimSoft. Calculation of melt velocity fields (relative to the solid matrix) were 

performed using the resulting pressures from the solution of the incompressible Navier 
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stokes equation, and Eqn. 3. The separation velocity field thus calculated was 

integrated in order to obtain melt streamlines relative to the solid.  

 


