
An Analysis of an Epistemic Toy Theory of Quantum Mechanics

with Connections to the Stabilizer Formalism

and Local Hidden Variable Tables.

Kyle W. Martin

Advisor: Carlton M. Caves

2009-2010

Toy models are used in every field of physics to help physicists understand more

complex systems without having to deal with the entire theory. Pictures also help

us understand systems with greater efficiency. For instance, we use Feynman

diagrams to deal with scattering cross-sections. Robert Spekkens developed a toy

theory of quantum mechanics and published his final version in Physical Review A

in 2007. His toy theory is based on a simple principle but recreates a great deal

of phenomena thought to be purely quantum in nature. His theory deals with

the states of a spin-1/2 particle, or qubit, and, specifically, with the qubit states

that lie on the Cartesian axes of the Bloch sphere. He uses pictures to describe

these states and how they are manipulated. We show that this toy theory is

closely related to the fully quantum-mechanical stabilizer formalism, which deals

with the same qubit states. We also show that the transformations that Spekkens

develops are just normalizer elements, transformations that take stabilizer states

to stabilizer states. We also define these normalizer transformations on the

generator matrices that describe the connections between the stabilizers and the

local hidden variable tables and use these generator matrices to connect this toy

theory to the stabilizer formalism.

0

Acknowledgments

I would like to thank Carl Caves for his help and guidance during this undergraduate

thesis project. I would also like to thank Matt Elliott for his help in understanding the

connections between the stabilizer formalism to the local hidden variable tables that can be

found in his thesis. I would like to thank the endless list of people that I had conversations

with and all those who helped my edit me final paper.

Contents

Acknowledgments 1

I. Toy theory 2

A. Elementary systems 3

1. Ontic and epistemic states and the knowledge balance principle 3

2. Measurements of an elementary system 7

3. Transformations of an elementary system 7

B. Two elementary systems 8

1. Ontic and epistemic states 8

2. Transformations for two elementary systems 15

C. Three elementary systems 18

D. N elementary systems 20

1. Epistemic states for N elementary systems 20

2. Transformations for N elementary systems 21

II. Stabilizer formalism 23

A. Stabilizer states 24

B. The normalizer group and stabilizer transformations 27

III. Local hidden variables 30

A. Local-hidden-variable tables 30

B. Examples of local-hidden-variable tables 32

IV. Conclusions 35

1

A. All of the group theory needed for this paper i

B. Proof 1 i

C. Proof 2 ii

References iv

I. TOY THEORY

Robert Spekkens developed his toy theory over a long period, posting the first version

to the e-print arXiv in January 2004 and publishing the final version in Physical Review A

in 2007. His toy theory is not based in quantum mechanics, and is not equivalent, but it

recreates some phenomena often thought to be purely quantum in nature. The toy theory can

be used to investigate such phenomena as superdense coding, teleportation, and no-cloning.

We examine the derivation of Spekkens’s toy theory in order to develop connections to other

models of quantum behavior. Spekkens limits the scope of his original toy theory to a case

of three systems. We have formulated his toy theory in a way to expand beyond the initial

scope and apply the toy theory to a N -system model.

Spekkens introduced his toy theory by carefully distinguishing the ontic and epistemic

states of a physical system. An ontic state (derived from the Greek ontos , meaning “to be”)

is a state of reality. An epistemic state (derived from the Greek word episteme, meaning

“knowledge”) shall be what we refer to as a state of knowledge. The easiest way to distinguish

ontic states and epistemic states is to refer to physical examples. Ontic states are usually seen

in classical mechanics where we can determine all the parameters that define a system, such

as position, momentum, and energy. Epistemic states are usually introduced in statistical

mechanics when the value of a parameter is difficult, if not impossible to determine. An

example of an epistemic state in statistical mechanics would be the probability distributions

used for the positions, momenta, and energies of gas molecules in a room. Spekkens created

a toy model for two-level quantum systems, or qubits , which defined the possible epistemic

states as obeying a well-defined principle, spelled out just below, which restricts knowledge

of the ontic states. He found that upon doing so the resulting theory he developed had some

effects thought to be purely quantum in nature. Of course, since Spekkens’s ontic states

2

FIG. 1: The box representation for an arbitrary elementary state, labeling the ontic states from

left to right

are like local hidden variables, it is known that his toy model cannot account for all the

predictions of quantum mechanics for multiple qubits. [10]

A. Elementary systems

1. Ontic and epistemic states and the knowledge balance principle

Spekkens’s toy theory is based on the following knowledge balance principle:

If one has maximal knowledge, then for every system, at every time, the amount

of knowledge one possesses about the ontic state of the system at that time must

equal the amount of knowledge one lacks.

In other words, we can obtain at most half the information about the true ontic state of a

system. In order to make use of this principle, there must be a concrete specification of the

ontic states and a representation of knowledge about the ontic states. For example, consider

a system with four ontic states, labeled 1, 2, 3, and 4. Figure 1 shows this example. We

could identify a particular ontic state by asking a series of four canonical yes/no questions,

“Is it 1, or not?”, “Is it 2, or not?”, etc., but this is an inefficient questioning scheme. We

could alternatively ask just two questions to identify a particular ontic state of this system:

“Is it in the set {1,2}, or not?”, and “Is it in the set {1,3}, or not?”. A system of four ontic

states requires the answer to exactly two such canonical yes/no questions to determine a

particular ontic state. An epistemic state of maximal knowledge satisfying the knowledge

balance principle corresponds to knowing the answer to exactly one of the canonical yes/no

questions.

We cannot apply Spekkens’s knowledge balance principle to a system of two ontic states

because a system of two ontic states requires the answer to just one canonical question and

therefore cannot fulfill the knowledge balance principle. A system with four ontic states is

3

FIG. 2: Box representation of all of the epistemic states for an elementary system, and their state

labels.

thus the smallest system that can fulfill the knowledge balance principle; we refer to a system

of four ontic states as an elementary system. Throughout this thesis, we are only concerned

with the epistemic states that correspond to maximal knowledge; for a single elementary

state, these require the answer to exactly one canonical yes/no question. There being three

unique canonical questions and two possible answers to each question, we conclude that

there are six epistemic states of maximal knowledge in an elementary system.

If we ask the question “Is it in the set {1,2}, or not?” with result +1 (yes), we know

that the state is 1 or 2. We define the symbol ∨, to be read “or,” and this epistemic state

is written 1 ∨ 2. The six possible epistemic states of maximal knowledge are the following:

1 ∨ 2 , 3 ∨ 4 , 1 ∨ 3 , 2 ∨ 4 , 2 ∨ 3 , 1 ∨ 4 . (1)

We can create a visual representation of the ontic states by labeling a series of four boxes,

as in Figure 1. For an epistemic state, we shade the boxes that satisfy the conditions of the

canonical question, as in Figure 2. [10]

When we answer one of these canonical questions we get a epistemic state that Spekkens

later connects to quantum states. This canonical question can be thought of as a quantum

operator. Although Spekkens never formally connects his canonical questions to operators

in quantum mechanics mechanics, we would like to connect these questions to operators

in quantum mechanics. Taking the idea that Hermitian operators are observables, we can

think of a canonical question as a two-valued observable. A yes or no answer to the question

“Is it in the set {1,2}, or not?” will be defined as the Z observable, whereas a yes or no

4

FIG. 3: The four ontic states of an elementary system labeled from left to right in binary. The

first digit corresponds to the toybit b and the second digit corresponds to the toybit a.

answer to the question “Is it in the set {1,3}, or not?” will be called the X observable. The

observables will have value +1 for a “yes” answer and −1 for a “no” answer. These two

observables, under multiplication, generate the group that describes answers to all canonical

yes/no questions. Because the multiplication of a generator with itself will always have a

+1 result, we will define X2 and Z2 both to be the identity I, which always has a “yes”

answer. The final group element, which we will call Y , will be defined to be the product

±XZ, with the sign depending on how we ask the third canonical yes/no question. We will

refer to this freedom in the sign of the XZ product as W = XY Z = ±1. Figure 2 shows

the box representations we use for these states.

It is usually easier to work in a bit representation, so we now define the binary “toybits”

a, b, and c seen in Equation 2

Z = (−1)b ,

X = (−1)a ,

W = (−1)c , which makes

Y = (−1)a+b+c (2)

All addition of these binary toybits will be done mod 2, as is automatic in the exponent of

−1. We can relabel the boxes in our visual representation with the binary digits a and b,

as shown in Figure 3. After we have relabeled the boxes, our binary toybits b and a emerge

as the labels of epistemic states. Simply declaring the value of one of these binary toybits

results in four of the epistemic states for an elementary system, as shown in Figure 4.

Now let’s consider the toybit c. The value of the observable Y = XZW = (−1)a+b+c is

determined by a+b+c. The two choices for c don’t change the final two epistemic states, but

they do change the way these two elementary states correspond to a value for Y . Figure 5

shows the final two epistemic states if we were to choose c = 0. If we conversely chose c = 1,

5

FIG. 4: The first four epistemic states, each depending only on the value of one of the a or b

toybits.

the roles of the representations are reversed, as shown in Figure 6. Whenever we consider

the value of Y for an epistemic state, we must define the value of c. To put it differently, to

read off the value of Y from a box representation, we must have the value of c.

FIG. 5: The final two epistemic states, which are determined by a+ b+ c, here with the choice of

c = 0.

FIG. 6: The final two epistemic states, which are determined by a + b + c, here with the choice

c = 1. These two epistemic states are the same as in Figure 5, but the way they correspond to a

value of Y has been reversed.

We now have all of the necessary apparatus to describe the states of a states of a single

system in Spekkens’s toy theory. To fully evaluate his theory, however, we must also examine

the allowed transformations between states and measurements on these states.

6

2. Measurements of an elementary system

Measurements in toy theory are the canonical questions themselves, measurements de-

termine the toy bits defined in Equation 2. As soon as a measurement is performed on the

elementary state, the state is projected into the epistemic state corresponding to the answer

obtained. For instance, if we have an elementary system in the epistemic state b = 0 (1∨ 2)

and we inquire about the value of X, we will project into the state a = 1 or a = 0 depending

on the answer. To retain the knowledge balance principle, the system must forget its original

ontic state before we inquired about X. In other words, although we know the system was

in state b = 0 before the measurement, and we learn, say, that the system is in state a = 0

(1 ∨ 3), we cannot conclude that the system is in the ontic state 00. Instead, all we know

after such a measurement is that the system is in one of the two ontic states corresponding

to the measurement result a = 0 (1 ∨ 3). [10]

3. Transformations of an elementary system

Spekkens never makes the operator connection and never labels his boxes with binary

numbers. When he defines the allowed transformations on an elementary system he continues

to use a base ten labeling scheme. This labeling scheme is more efficient when defining the

transformations on elementary systems so we will return to the base ten labeling scheme

here. There are three types of transformations in an elementary system. The first is a

many-to-one transformation. For example, we can consider the transformation that takes

the epistemic state 1∨ 2 to the ontic state 1. This new state is no longer an epistemic state

and is outside the scope of the theory, so we will neglect this type of transformation. The

second type is a one-to-many transformation, an example of which would take 1∨2 to 1∨2∨3;

this state no longer has maximal knowledge as defined by our knowledge balance principle.

Because we are only interested in states that have maximal knowledge, we will also neglect

this type of transformation. The third and final type is a one-to-one transformation. This

type can be thought of as a permutation of the four boxes. We can thus use permutations

to characterize the transformation. For example, a transformation that takes 1→ 1, 2→ 3,

3 → 4, and 4 → 2 consists of a one-cycle and a three cycle permutation. We would write

this transformation as (1)(234), where numbers in parentheses are cycled in a right-handed

7

FIG. 7: All of the allowed transformations on an elementary system grouped into cycle classes and

paired with their inverses. Figure from [10]

fashion. Permutations with the same number of cycles form a class. There are 24 possible

one-to-one transformations, grouped in five classes, as shown in Figure 7.

Permutations that are paired are inverses, and permutations that are not paired are their

own inverse. These cyclic permutations are the only way in which we can move between

states of elementary systems. From one epistemic state and all of the transformations, we

can build any other epistemic state. We now turn to enlarging the theory to include more

than one elementary system; the main addition is presence of epistemic states that codify

correlations between elementary systems. [10]

B. Two elementary systems

1. Ontic and epistemic states

A combination of two elementary systems requires four toybits to fully specify a particular

ontic state. A state of maximal knowledge, according to the knowledge balance principle,

would be a state where exactly two toybits are known. The symbol “·” to be read “and”

will help us to introduce the idea of a multiple system.

At the two-system level, there are two different types of epistemic states that satisfy the

knowledge balance principle. In the first type, we can address each individual elementary

system separately. We can write these epistemic states as separate states of the two elemen-

8

FIG. 8: Box representation for an arbitrary two-system state. The first system’s toybits are labeled

from bottom to top as the vertical boxes, while the second system’s bits are labeled right to left

on the horizontal boxes.

tary systems, with our new symbol connecting them. For instance, (1 ∨ 2) · (1 ∨ 2) would

be the system with toybit constraints b1 = 0 and b2 = 0. In the second type of two-system

epistemic state, we cannot separate the elementary systems involved, since the bits of in-

formation about the individual systems are correlated. Consider, for example, the system

with toybit constraints a1 + a2 = 0 and b1 + b2 = 0; we can use our new symbol to write this

state as (1 · 1) ∨ (2 · 2) ∨ (3 · 3) ∨ (4 · 4). We cannot clearly define a toybit for one system

without defining the same toybit for the other system.

We can invent a picture to capture all of the two-system states, but we will have to extend

our original picture into a second dimension. Figure 8 shows that the visualization requires

four toybits to fully specify an ontic state. A state of maximal knowledge, according to the

knowledge balance principle, would be a state where only two toy bits are known.

Not all possible ways of filling in four boxes are acceptable, however, since we must be

careful not to violate the knowledge balance principle for either of the single elementary

systems by itself. We can still only have at most one toybit of information about each

individual elementary system. Figures 9 and 10 show the states described above, which

do satisfy the knowledge balance principle for each separate system. All of the boxes that

satisfy the toybit equations for these states are shaded. It turns out that permutations of the

rows and columns of these pictures, which correspond to the single-system transformations

already discussed, yield all of the allowed epistemic states for two elementary systems.

An example of a four-box state that violates the knowledge balance principle is (1 · 1) ∨

(2 · 1) ∨ (3 · 1) ∨ (4 · 1), which is specified by toybits a2 = 0 and b2 = 0 and corresponds

to shading the first column of boxes. This state obviously violates the knowledge balance

9

FIG. 9: The box depiction of the epistemic state (1 · 1) ∨ (2 · 2) ∨ (3 · 3) ∨ (4 · 4). All of the boxes

are shaded such that the linear equations a1 + a2 = 0 (a1 = a − 2) and b1 + b2 = 0 (b1 = b2) are

simultaneously satisfied. The two elementary systems are correlated in this epistemic state.

FIG. 10: The box depiction of the state (1 ∨ 2) · (1 ∨ 2). All of the boxes are shaded such that the

linear equations b1 = 0 and b2 = 0 are simultaneously satisfied. In this situation, each elementary

system has its own separate state.

principle because we know the ontic state of the second system (without knowing anything

about the ontic state of the first system). Figure 11 shows another state that violates the

knowledge balance principle in a slightly less obvious way. Even so, we can quickly see how

this system violates the knowledge balance principle if we ask for the value of Z1. Upon

obtaining the answer to this question, the system would be projected into the b1 = 0 or

b1 = 1 state; in both cases, we would then have complete knowledge of the ontic state of

system 2 as either a2 = 0 = b2 for b1 = 0 or a2 = 1 and b2 = 0 for b1 = 1. [10]

It is worth spelling out in detail the allowed epistemic states of two elementary systems,

and it is easiest to do so in terms of the toybits. For a single elementary system, we can

constrain the value of a, b, or a+b. Formally, we need to consider the algebra of these toybits

and, in addition, the no-constraint condition, which we label by a boldface 0. We let d be a

10

FIG. 11: The state depicted here, (1 · 1) ∨ (2 · 1) ∨ (3 · 2) ∨ (4 · 2), violates the knowledge balance

principle. This state satisfies the simultaneous linear equations b1 + a2 = 0 (b1 = a2) and b2 = 0.

These linear equations make clear that if one determines the value of Z1, i.e., determines b1, then

one knows the values of both a2 and b2, in violation of the knowledge balance principle.

variable that can stand for any of these four quantities. For two elementary systems, we need

two linearly independent toybit constraints, on d1 + d2 and d′1 + d′2. Linear independence

implies that both these quantities are not 0 and that they are not equal, which is equivalent

to the following conditions:

d1 6= 0 or d2 6= 0 ,

d′1 6= 0 or d′2 6= 0 ,

d1 6= d′1 or d2 6= d′2 . (3)

Now let’s consider the consequences of the knowledge balance principle, motivated by

the discussion in Figure 11. If d1 = 0 or d′1 = 0 or d1 = d′1, then d2 and d′2 are already

determined (if d1 = d′1 = 0), or observation of the nonzero one of d1 and d′1 determines both

d2 and d′2 on the second system; if 0 6= d2 6= d′2 6= 0, this would determine the ontic state of

the second system, in violation of the knowledge balance principle. Thus we conclude that if

d1 = 0 or d′1 = 0 or d1 = d′1, the knowledge balance principle requires that d2 = 0 or d′2 = 0

or d2 = d′2. We can, of course, reach the same conclusion with the two systems reversed: if

d2 = 0 or d′2 = 0 or d2 = d′2, the knowledge balance principle requires that d1 = 0 or d′1 = 0

or d1 = d′1.

Putting together the requirements of linear independence and the knowledge balance

11

principle, we find the following allowed possibilities:

(i) d1 = 0, d′1 6= 0, d2 6= 0, d′2 = 0 ,

(ii) d1 6= 0, d′1 = 0, d2 = 0, d′2 6= 0 ,

(iii) d1 = 0, d′1 6= 0, d2 = d′2 6= 0 ,

(iv) d1 6= 0, d′1 = 0, d2 = d′2 6= 0 ,

(v) d1 = d′1 6= 0, d2 = 0, d′2 6= 0 ,

(vi) d1 = d′1 6= 0, d2 6= 0, d′2 = 0 ,

(vii) 0 6= d1 6= d′1 6= 0, 0 6= d2 6= d′2 6= 0 . (4)

This looks like a mess, but a little thought shows it is not as bad as it seems. Cases (i)

and (ii) are the same under interchange of the primed and unprimed quantities; they describe

separate states of the two systems, like the state in Figure 10; indeed, the state of Figure 10

can be accommodated within case (ii) as d1 = b1, d2 = 0, d′1 = 0, and d′2 = b2. Cases (iii)–(vi)

are nothing new; they describe the same separate states as cases (i)–(ii), but in a different

way. For example, in case (iii), we could replace d′1 + d′2 by d1 + d2 + d′1 + d′2, thus reducing

this situation to case (i). As a specific example, the state of Figure 10 could equally well be

specified by d1 = b1, d2 = b2, d
′
1 = 0, and d′2 = b2, which falls under case (iv). Case (vii)

includes all the correlated epistemic states of the two systems. For example, the correlated

state of Figure 9 is specified by d1 = a1, d2 = a2, d
′
1 = b1, d

′
2 = b2.

Our goal now is to translate the allowed possibilities for epistemic states of two elementary

systems into an efficient mathematical condition involving the toybits. To develop the right

mathematical language, we define two column vectors that contain the X and Z toybits for

two elementary systems:

~a =

a1

a2

 , ~b =

b1
b2

 . (5)

We then stack ~a on top of ~b to create a column vector ~A with four elements:

~A =

~a
~b

 (6)

For the case of two elementary systems, we can express the two toybit constraints in

terms of a 2× 4 matrix, G. The toybit constraints are obtained by multiplying ~A by G and

12

equating the result to a column vector,

~v =

v1

v2

 , (7)

whose two elements, v1 and v2, give the constrained values of the appropriate linear combi-

nations of toybits. The toybit constraints are thus expressed as

G~A = ~v . (8)

For example, the epistemic state (1 ∨ 2) · (1 ∨ 2) of Figure 10 would have the the following

matrix and value vector:

G =

0 0 1 0

0 0 0 1

 , ~v =

0

0

 . (9)

The corresponding quantities for the correlated state (1 ·1)∨(2 ·2)∨(3 ·3)∨(4 ·4) of Figure 9

would be the following:

G =

1 1 0 0

0 0 1 1

 , ~v =

0

0

 . (10)

In contrast, the four-box state of Figure 11, (1 · 1) ∨ (2 · 1) ∨ (3 · 2) ∨ (4 · 2), which is not an

allowed epistemic state, has the following matrix and value vector:

G =

0 1 1 0

0 0 0 1

 , ~v =

0

0

 . (11)

We often find it convenient to divide our matrix G into the two parts that multiply the

toybits in ~a and the toybits in ~b. Both of these parts will be square matrices, and in the

case of two elementary systems, they will be 2× 2 matrices. We will label the left-hand side

by GX and the right-hand side by GZ :

G =
(
GX GZ

)
. (12)

The astute reader will recognize that the rows of G are a binary-vector representation

of the quantities d1 + d2 and d′1 + d′2 introduced above. Thus one can expect there to be

a linear-algebraic condition for the allowed epistemic states. Indeed, by directly checking

the conditions for an epistemic state listed above, we can show that a matrix G defines an

allowed epistemic state if and only if its rows are linearly independent and it satisfies the

symplectic condition

0 = GΛGT = GZG
T
X +GXG

T
Z , (13)

13

where

Λ =

0 I

I 0

 (14)

is the fundamental (binary) symplectic matrix, which satisfies Λ2 = I. The content of the

condition GΛGT = 0 is that the symplectic product of the two rows of G must vanish, i.e.,

g1,1g2,3 + g1,2g2,4 + g1,3g2,1 + g1,4g2,3 = 0 . (15)

Here and below we label the matrix elements of G in the standard way. The symplectic

product assumes a fundamental position in the toy theory as an expression of the knowledge

balance principle.

We now summarize what we have found about the epistemic states of two elementary

systems.

Any matrix G with linearly independent rows that satisfy the symplectic condition

defines an allowed epistemic state. The actual state depends on the values that

are assigned to the constrained toybits; these values are contained in the vector

~v. If we wish to talk about the Y observables, we must also specify values for

the c’s.

It turns out below that nothing in this statement has to be changed for an arbitrary number

of elementary systems; only the dimensions of G, ~A, and ~v change.

We now want to turn to consideration of the allowed state transformations for two ele-

mentary systems. To do that, however, it is a good idea to extend our description thus far

just a bit further. Given a matrix G with linearly independent rows satisfying the symplectic

condition, it is always possible to find two more linearly independent rows, which we place

into a 2× 4 matrix

H =
(
HX HZ

)
; (16)

moreover, it is possible to choose these two rows so that H satisfies the symplectic condition,

i.e., HΛHT = 0, and so that GZH
T
X +GXH

T
Z = I. We can then define a 4× 4 matrix G by

stacking G on top of H:

G =

G
H

 =

GX GZ

HX HZ

 . (17)

14

This new matrix satisfies the extended symplectic condition:

GΛGT =

GZG
T
X +GXG

T
Z GZH

T
X +GXH

T
Z

HZG
T
X +HXG

T
Z HZH

T
X +HXH

T
Z

 = Λ . (18)

A matrix that satisfies the extended symplectic condition we call a symplectic matrix. The

extended symplectic condition implies that G is invertible (even had we not constructed it

to be invertible), and its inverse is given by G−1 = ΛGTΛ. That our matrix is now invertible

is the reason for introducing this extension.

We now introduce a vector

~q =

q1
q2

 , (19)

which contains two random bits, q1 and q2, by which we mean that these bits are equally

likely to be 0 or 1. To put it differently, if a combination of toybits equals q1 or q2, this

imposes no constraint on the value of that combination of toybits. Next we stack ~v on top

of ~q to give a column vector

~V =

~v
~q

 . (20)

With all this under our belt, we can now write the equation that defines an epistemic state

as GX GZ

HX HZ

~a
~b

 = G ~A = ~V =

~v
~q

 . (21)

The two rows of G impose the toybit constraints that define the state. The two rows of H

relate combinations of toybits to the random values q1 and q2 and thus impose no constraint.

This extended formulation comes up again and again throughout the following, particu-

larly when we consider local-hidden-variable tables for epistemic states. For the present, we

apply it to the allowed transformations for two elementary systems.

2. Transformations for two elementary systems

Two different epistemic states are specified by the equations G ~A = ~V and G ′ ~A = ~V ′.

The vectors ~V ′ and ~V differ by constants in the top two entries. The matrix N = G−1G ′ =

transforms G into G ′ by right multiplication. It is clear that N is a symplectic matrix.

Furthermore, if we regard transformations as being given by right matrix multiplication,

15

i.e., G ′ = GN , it is easy to see that N must be symplectic to preserve the symplectic

character of the state matrices. Only the transformation of G, i.e., the top rows of G affects

the final state. We can conclude that an allowed state transformation is described by a

symplectic matrix N and by two value bits that are added to ~v.

The above is a bit of very simple linear algebra, but it enforces Spekkens’s constraint

that every transformation must take us to another allowed epistemic state. The right matrix

multiplication byN performs column operations onG [7]. It turns out that all the symplectic

matrices can be constructed from a small set of elementary transformations, just five in the

case of 4× 4 symplectic matrices:

N1 =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 , N2 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 , N3 =


1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

N4 =


1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 , N5 =


1 1 0 0

0 1 0 0

0 0 1 0

0 0 1 1

 . (22)

It will be easier to see how these matrices generate all of the allowed transformations on

G later, after we have introduced the stabilizer formalism, as these matrices were modeled

after generators for a complete set of transformations in that formalism.

Without doing the matrix multiplications, it is hard easily to see how these matrices

transform the G matrix, so in the following we perform these matrix transformations on

arbitrary matrices in order to illustrate how the column operations are performed. Applying

N1 swaps the first and third columns, shown in Equation 23

N1 :

g1,1 g1,2 g1,3 g1,4

g2,1 g2,2 g2,3 g2,4

→
g1,3 g1,2 g1,1 g1,4

g2,3 g2,2 g2,1 g2,4

 (23)

The matrix N2 swaps the second and fourth columns, shown in Equation 24

N2 :

g1,1 g1,2 g1,3 g1,4

g2,1 g2,2 g2,3 g2,4

→
g1,1 g1,4 g1,3 g1,2

g2,1 g2,4 g2,3 g2,2

 (24)

16

The transformation N3 sums the first and third columns and places the result in the third

column, shown in Equation 25

N3 :

g1,1 g1,2 g1,3 g1,4

g2,1 g2,2 g2,3 g2,4

→
g1,1 g1,2 g1,1 + g1,3 g1,4

g2,1 g2,2 g2,1 + g2,3 g2,4

 (25)

The matrix N4 sums the second and fourth columns and places the result in the fourth

column, shown in Equation 26

N4 :

g1,1 g1,2 g1,3 g1,4

g2,1 g2,2 g2,3 g2,4

→
g1,1 g1,2 g1,3 g1,2 + g1,4

g2,1 g2,2 g2,3 g2,2 + g2,4

 (26)

The transformation N5 sums the second column with the first column and places the result

in the second column and also replaces the third column with the sum of the third and

fourth columns, shown in Equation 27

N5 :

g1,1 g1,2 g1,3 g1,4

g2,1 g2,2 g2,3 g2,4

→
g1,1 g1,2 + g1,1 g1,4 + g1,3 g1,4

g2,1 g2,2 + g2,1 g2,4 + g2,3 g2,4

 . (27)

This sort of transformation is associated with a controlled-NOT gate in the stabilizer formal-

ism, so we often refer to the first system as the control and the second as the target. As noted

above, these five matrices can be used to general all possible symplectic transformations.

We have to remember that to specify a state transformation completely, we have to say

how the value vector ~V changes; moreover, to interpret the Y values after the transformation,

we have to know how the c’s change. We want the transformations that we preform to be

connected to the permutations of boxes derived by Spekkens. When we change the value

vector V we must ensure that the new states we arrive at can be generally arrived at by

similar permutations on the toy states. To do this transformation in such a way to generate

all of the allowed permutations on toy states we must include the G matrix when we add

binary vectors to the value vector. Equation 28 shows how we will preform the value vector

changes.

GN = ~v +G~P (28)

~P is a binary vector with no restrictions, we multiply ~P with our G matrix, ot only to keep

connections between states but also to ensure that we conduct allowed permutations, that

do not change ~P for different systems. The G matrix will continue to dictate how the system

evolves under transformations. We can change the c values in any way we please, but we

17

return to how the question of how these quantities change when we get to the stabilizer

formalism below.

For the present, we consider how the formalism of a G matrix is expanded to three systems

within the toy model.

C. Three elementary systems

In presenting his toy theory, Spekkens limited his discussion to one, two, and three

elementary systems. It is at the three-system level that we begin to see that the knowledge

balance principle yields an incomplete picture of quantum mechanics, and we must contend

with situations where no matter how answers are assigned to canonical questions, we cannot

mimic the predictions of quantum mechanics. Since Spekkens only considers three different

three-system states, he provides very little guidance in how to use his approach for three

systems and for how to associate the toy model with quantum-mechanical predictions. We

are thus left pretty much to our own resources in generalizing the toy model to three systems

and beyond and in developing the connections to quantum states.

The first epistemic state Spekkens considers is (1 ∨ 2) · (1 ∨ 2) · (1 ∨ 2). Figure 12 shows

the box representation of this state. This state is one for which each system has its own,

separate epistemic state, 1 ∨ 2, which satisfies the knowledge balance principle. This state

is described by the toybit linear equations

b1 = 0 , b2 = 0 , b3 = 0 . (29)

The second three-system epistemic state that Spekkens shows us is given by [(1 · 1)∨ (2 ·

2) ∨ (3 · 3) ∨ (4 · 4)] · (1 ∨ 2). This is clearly the state for which the first two systems are

correlated as in Figure 9, and the third system has its own separate state, 1 ∨ 2. This state

is specified by the toybit constraints

a1 + a2 = 0 (a1 = a2) , b1 + b2 = 0 (b1 = b2) , b3 = 0 . (30)

Figure 13 gives us the box representation of this system.

The last state that Spekkens discusses, (1 · 1 · 1) ∨ (1 · 2 · 2) ∨ (2 · 1 · 2) ∨ (2 · 2 · 1) ∨ (3 ·

3 · 3) ∨ (3 · 4 · 4) ∨ (4 · 3 · 4) ∨ (4 · 4 · 3), is one where none of the three systems has its own

epistemic state. In this state, all three elementary systems are correlated. A set of toybit

18

FIG. 12: The above state, (1∨2) · (1∨2) · (1∨2), is an allowed epistemic state for three elementary

systems. Each system has its own epistemic state, in this case 1∨2, and the overall state is specified

by the toybit constraints b1 = 0, b2 = 0, and b3 = 0 Figure from [10].

FIG. 13: Box representation of the allowed three-system epistemic state [(1 · 1) ∨ (2 · 2) ∨ (3 · 3) ∨

(4 ·4)] · (1∨2). The toybit constraints for this state are a1 +a2 = 0 (a1 = a2), b1 + b2 = 0 (b1 = b2),

and b3 = 0 Figure from [10].

constraints that define this state are

a1 + a2 + a3 = 0 , b1 + b2 = 0 , b2 + b3 = 0 . (31)

Notice that the latter two constraints require that b1 = b2 = b3. Figure 14 gives the box

representation of this state.

If we make the obvious extension of dimensions, the G matrix and value vector that

describe the correlated state of Figure 14 state are

G =


1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 1

 , ~v =


0

0

0

 . (32)

19

FIG. 14: Box representation of the allowed three-system epistemic state (1 · 1 · 1) ∨ (1 · 2 · 2) ∨ (2 ·

1 · 2)∨ (2 · 2 · 1)∨ (3 · 3 · 3)∨ (3 · 4 · 4)∨ (4 · 3 · 4)∨ (4 · 4 · 3). This state is specified by the toybit linear

equations a1 + a2 + a3 = 0, b1 + b2 = 0, and b2 + b3 = 0. The latter two constraints are equivalent

to b1 = b2 = b3 Figure from [10]

This matrix G has linearly independent rows and satisfies the symplectic condition, GΛGT =

0. We are motivated to ask if these are the general conditions for epistemic states of three

systems. We can get at this result by considering the epistemic states of the first two systems

as known from our previous analysis and then adding a third system. An argument just like

that given above for two elementary systems establishes the conditions for a three-system

epistemic state; when translated to G matrices, the conditions turn out to be that the rows

of G are linearly independent and that the matrix satisfies the symplectic condition. Indeed,

the italicized state statement in Section I.B.1 applies without change to three elementary

systems.

In the same way, we can also generalize our discussion of allowed transformations to three

elementary systems: the allowed transformations are described by symplectic matrices. This

suggests that we now have the resources to generalize the toy model to an arbitrary number

of systems, and this we now show.

D. N elementary systems

1. Epistemic states for N elementary systems

A combination of N elementary systems requires the knowledge of 2N bits of informa-

tion to fully identify a particular ontic state. Knowledge of N bits is necessary to specify

20

an epistemic state of maximal knowledge, but as we have already seen for two and three

elementary systems, the N bits must be chosen so as not to violate the knowledge balance

principle for any subset of the N systems.

To depict the epistemic states of N systems in terms of Spekkens’s boxes would require

an N -dimensional picture, which means that pictures run out of gas after three systems.

Instead, we will specify N -system states in terms of their G matrices and the value vector ~v.

To consider the values of the Y observables of the N systems, we must also specify a value

of c for each system. At this point, it should not be surprising that the requirement on the

G matrices is that they satisfy the symplectic condition. Indeed, the italicized statement in

Section I.B.1 remains valid for N systems. To show this, we can consider an inductive proof

that assumes the statement is valid for N − 1 systems and then uses an argument identical

to that in Section I.B.1 to show the statement is valid for N systems. In just the same

way as we did for two elementary systems, the G matrix can be extended to an invertible G

matrix by stacking the G matrix on top of an associated matrix H.

2. Transformations for N elementary systems

The allowed transformations for N elementary systems are described by multiplying the

state matrix G on the right by matrices N of size 2N × 2N . Using the same argument we

used for two and three elementary systems, we find that the allowed transformation matrices

are symplectic transformations. To describe a state transformation fully, of course, we must

also specify what happens to the value vector ~v.

The set of 2N × 2N symplectic matrices might seem to be quite a complicated set to

describe, but in fact, all such matrices are generated by matrices of the form discussed in

Section I.B.2, but applied to any pair of systems among the N available. To see how this

works out, we introduce a new notation that refers to the X sector of the G matrix by a set of

column vectors, ra(n), where the index n refers to the nth column of the X sector. Similarly,

the Z sector will be referred to by rb(n). We consider now three classes of transformations.

The first class of transformations contains the ones much like the N1 and N2 transformations

at the two-system level. The transformations in this first class can be defined by explaining

21

how the final G matrix will result from the initial matrix:

ra(n)→ rb(n) ,

rb(n)→ ra(n) . (33)

Transformations of this first class affect only one elementary system, swapping the nth

columns of the X and Z sectors. Figure 15 shows this column swap in detail.

0BBBBBB@
g1,1 . . . g1,n g1,N+n . . . g1,2N

g2,1 . . . g2,n g2,N+n . . . g2,2N

...
. . .

...
. . .

. . .
...

. . .
...

gN,1 . . . gN,n gN,N+n . . . gN,2N

1CCCCCCA→
0BBBBBB@
g1,1 . . . g1,N+n g1,n . . . g1,2N

g2,1 . . . g2,N+n g2,n . . . g2,2N

...
. . .

...
. . .

. . .
...

. . .
...

gN,1 . . . gN,N+n gN,n . . . gN,2N

1CCCCCCA

FIG. 15: Effect on G of a matrix in the first class of transformations. On the left-hand side of the

arrow we have the original matrix with the n and n+N columns highlighted. This transformation

interchanges these two columns. The matrix on the right-hand side shows this interchange explicitly

by swapping the colors of the highlighted columns.

The second class of transformations are the ones much like theN3 andN4 transformations

at the two-system level:

rb(n)→ rb(n) + ra(n) . (34)

This second class of transformations is portrayed in Figure 16, where the two columns in

question are highlighted in different colors. As for the first class, these transformations only

affect a single elementary system. The column addition is shown as the combination of the

two highlighted colors.

The last class of transformations are the ones much like the N5 transformations at the

two-system level. These transformations affect two elementary systems, a control, n, and a

target, m:

ra(m)→ ra(m) + ra(n)

rb(n)→ rb(m) + rb(n) (35)

Figure 17 shows this last class of transformations, again with the highlighted columns in

question and the addition of these columns regarded as the combinations of the highlight

colors. With these three classes of transformations, we can build any allowed transformation

for an arbitrary N dimensional system [10].

22

0BBBBBB@
g1,1 . . . g1,n g1,N+n . . . g1,2N

g2,1 . . . g2,n g2,N+n . . . g2,2N

...
. . .

...
. . .

. . .
...

. . .
...

gN,1 . . . gN,n gN,N+n . . . gN,2N

1CCCCCCA→
0BBBBBB@
g1,1 . . . g1,n g1,n + g1,N+n . . . g1,2N

g2,1 . . . g2,n g2,n + g2,N+n . . . g2,2N

...
. . .

...
. . .

. . .
...

. . .
...

gN,1 . . . gN,n gN,n + gN,N+n . . . gN,2N

1CCCCCCA

FIG. 16: Effect on G of a matrix in the second class of transformations. On the left-hand side

of the arrow we have the original matrix with the n and n + N columns highlighted. During

this transformation the n column is added to the n + N column. The matrix on the right hand

highlights that these two columns have been summed.

0BBBBBBB@

. . . g1,n . . . g1,m . . . g1,N+n . . . g1,N+m . . .

. . . g2,n . . . g2,m . . . g2,N+n . . . g2,N+m . . .

.

.

.

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

.

.

.

.

.

.

. . . gN,n . . . gN,m . . . gN,N+n . . . gN,N+m . . .

1CCCCCCCA
→

0BBBBBBB@

. . . g1,n . . . g1,m + g1,n . . . g1,N+n + g1,N+m . . . g1,N+m . . .

. . . g2,n . . . g2,m + g2,n . . . g2,N+n + g2,N+m . . . g2,N+m . . .

.

.

.

.

.

.
. . .

.

.

.
. . .

.

.

.
. . .

.

.

.

.

.

.

. . . gN,n . . . gN,m + gN,n . . . gN,N+n + gN,N+m . . . gN,N+m . . .

1CCCCCCCA

FIG. 17: Effect on G of a matrix in the second class of transformations. On the left-hand side of

the arrow we have the original matrix with the four columns highlighted: n (blue), m (red), N +n

(green) and N +m (orange). During this transformation the n column is added to the m column

and the m + N column is added to the n + N column. The matrix on the righthand side shows

the two combined columns in both the m and N + n columns with the colors of the m+N and n

columns remaining unchanged.

II. STABILIZER FORMALISM

The stabilizer formalism is a well known theoretical apparatus used to describe the states

of a two-level system, or qubit, that lie on the axes of the Bloch sphere. The Bloch sphere,

shown in Figure 18, is much like the Poincaré sphere, but for electron spin rather then for

polarization of light. We must begin our discussion of the Stabilizer formalism by introducing

the Pauli group under matrix multiplication. The Pauli matrices (and the identity matrix)

are normally denoted by σα where the subscript α = 0, 1, 2, 3 or rather α = 0, x, y, z. From

this point on, we will denote the Pauli matrices by the capital letters I,X, Y, Z, where I = σ0

is the identity matrix, and we will only revert to the σ notation when referring to arbitrary

Pauli matrices:

X = σx =

0 1

1 0

 , Y = σy =

0 −i

i 0

 , Z = σz =

1 0

0 −1

 . (36)

23

The Pauli group P for a single qubit contains the Pauli matrices along with the freedom to

multiply them by ±1 and ±i,

P = {±I ± iI,±X,±iX,±Y,±iY,±Z,±iZ} . (37)

We will often be considering a system of N qubits, and then the Pauli groups consists of

all N-fold tensor products of Pauli matrices along with the freedom to multiply them by ±1

and ±i.

A. Stabilizer states

We say a state is stabilized by a (Hermitian) operator when that state is a +1 eigenstate of

that operator. For example, the state |0〉 is stabilized by the Pauli matrix Z, i.e., Z|0〉 = |0〉,

and the state |1〉 is stabilized by −Z, i.e., −Z|1〉 = −|1〉. In this way we can deal with

measurements that will yield a +1 value, instead of with the actual state. For a system of

N qubits, the stabilized states are +1 eigenstates of tensor products of N Pauli operators,

e.g.,

Z1 ⊗ Z2 ⊗ . . .⊗ ZN |0〉1 ⊗ |0〉2 ⊗ . . .⊗ |0〉N = |0〉1 ⊗ |0〉2 ⊗ . . .⊗ |0〉N . (38)

We will generally not use the tensor-product symbol between the kets or the operators, using

the subscripts on the operators to identify which system they operate on, and ordering the

kets correctly. Using this simplified notation, Eq. (38) would reduce to

Z1Z2 . . . ZN |00 . . . 0〉 = |00 . . . 0〉 . (39)

Often it is convenient to streamline the notation even further by omitting the subscripts

on the Pauli operators in a tensor-product string, since the ordering of the operators tells

which system an operator acts on. Thus, for example, we could write for three qubits,

Z1Z2Z3 = ZZZ, or for five qubits, X2Y4 = IXIY I.

A stabilizer state of N qubits will have 2N (commuting, Hermitian) stabilizers; these

are said to make up the (abelian) stabilizer group. We only need to specify a set of N

independent stabilizer generators from the group in order to generate the complete group of

2N stabilizers to fully identify a particular state. We are interested in the particular case of

N (independent and commuting) generators that have a specific simultaneous +1 eigenstate.

24

FIG. 18: Bloch sphere. The spin up and down states, which we call |0〉 and |1〉, lie on the ±z-axis.

Equal superpositions of spin up and down lie in the equatorial plan. The states on the ±x-axis are

|±〉 = (|0〉 ± |1〉)/
√

2, and the states on the ±y-axis are | ± i〉 = (|0〉 ± i|1〉)/
√

2.

We can make a connection with the toy theory by defining the same sort of matrix G as

we did for toy theory. First we need to represent Pauli matrices with binary numbers, so we

define two bits ra(α) and rb(α), where α = 0, 1, 2, 3 is a label on a Pauli operator:

ra(α) = δx,α + δy,α =



0 , α = I

1 , α = X

0 , α = Z

1 , α = Y

,

rb(α) = δz,α + δy,α =



0 , α = I

0 , α = X

1 , α = Z

1 , α = Y

.

Turning this labeling around, we can now designate a Pauli operator by the corresponding

binary number rarb, i.e., σ0 = I = σ00, σ3 = Z = σ01, σ1 = X = σ10, and σ2 = Y = σ11.

Next we use the fact that Y = iXZ and our definition of the binary specifier to represent

an arbitrary Pauli operator as

σrarb = irarbXraZrb . (40)

25

We would now like to write an arbitrary generator for an N qubit system in this way. We

can do this by taking an N -fold tensor product of our arbitrary Pauli operator:

σra(1)rb(1) ⊗ · · · ⊗ σra(N)rb(N) =
N⊗
k=1

ira(k)rb(k)Xra(k)Zrb(k) . (41)

We can now pull out the i’s and get that any N -fold tensor product—and, hence, any

generator, up to a preceding sign of ±1—is given by

σra(1)rb(1) ⊗ · · · ⊗ σra(N)rb(N) = i
PN

k=1 ra(k)rb(k)

N⊗
k=1

Xra(k)Zrb(k) . (42)

We can now fully specify a generator, up to a sign, by a 2N -dimensional row vector, called

the check vector, which contains all the binary specifiers:

~r =
(
~ra ~rb

)
=
(
ra(1) · · · ra(N) rb(1) · · · rb(N)

)
. (43)

Key facts are, first, that two Pauli products commute if and only if the symplectic product

of their check vectors, ~r1 and ~r2, is zero, i.e.,

0 =
N∑
k=1

r1a(k)r2b(k) + r1b(k)r2a(k) , (44)

and, second, that two generators are independent if and only their check vectors are linearly

independent. [3]

If we have N (independent and commuting) generators, we can fully specify them by

their check vectors ~r1, . . . , ~rN , which are linearly independent and have vanishing pairwise

symplectic products. Thus, if we stack the check vectors on top of one another as the rows

of a N × 2N matrix

G =


~r1

~r2
...

~rN

 , (45)

this matrix G has linearly independent rows and satisfies the symplectic condition. We call

such a matrix a generator matrix ;we realize now that the G matrices of the toy model are

such generator matrices.

Since the generator matrix only represents the stabilizer generators up to a sign, we should

regard the generator matrix as specifying not a particular state, but rather as specifying an

26

orthonormal basis of states, with the signs of the generators giving the ±1 eigenvalues of

the Pauli products. The 2N possible strings of eigenvalues correspond precisely to the 2N

vectors in an orthonormal basis; they can alternatively be regarded as the values contained

in the vector ~v of the toy model. Having established this correspondence, we now refer to

G in both the toy model and the stabilizer formalism as the generator matrix, and we refer

to ~v in both situations as the value vector.

We will now have to consider matrices that transform between stabilizer states [1, 4, 5, 9].

B. The normalizer group and stabilizer transformations

Elements of the normalizer group are transformations that unitarily conjugate Pauli-

group elements, i.e., tensor products of Pauli operators, to other Pauli-group elements. For

instance, for a single qubit, the Hadamard gate, H, which is defined as,

H =
1√
2

1 1

1 −1

 = H† . (46)

alters the Pauli matrices in the following way:

H†XH = Z ,

H†ZH = X ,

H†Y H = −Y . (47)

[9] [4] [5]

Since a normalizer element will conjugate a generator set to another generator set, it

can be said to transform the corresponding generator matrix. The transformation of the

generator matrix will be described by multiplying the generator matrix on the right by a

symplectic matrix, so there is a one-to-one correspondence between normalizer elements and

symplectic transformations of the toy theory. To describe a state transformation in the toy

model completely, however, we need also to say how the value vector transforms. The toy

model, as a hidden-variable model, is not equivalent to quantum mechanics. Thus there is

generally no value vector that duplicates the predictions of quantum mechanics. We return

to this disconnect between the toy model and quantum mechanics below.

We can generate the entire group of normalizer elements for N qubits using just two

single-qubit operations and an entangling operation. [1] We use the Hadamard and the S

27

gate for our single-qubit operations, and the controlled-NOT for our entangling operation.

The S gate, sometimes called the phase gate, is defined by

S =

1 0

0 i

 ; (48)

it conjugates the Pauli matrices in the following way:

S†XS = Y ,

S†Y S = −X ,

S†ZS = Z . (49)

Because the controlled-NOT (CN) is a two-qubit operation, we invent a notation to

specify which qubit we are controlling and which qubit is our target. We will use the

notation n → m to designate that qubit n is our control and qubit m is our target. The

matrix representation of the CN can be written as

CN1→2 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (50)

I find this matrix representation to be less enlightening than displaying how the basis states

are transformed using the controlled-NOT operation:

CN1→2|00〉 → |00〉 ,

CN1→2|01〉 → |01〉 ,

CN1→2|10〉 → |11〉 ,

CN1→2|11〉 → |10〉 . (51)

We can quickly determine how the controlled-NOT conjugates Pauli products:

CN†n→mInXmCNn→m = InXm ,

CN†n→mXnImCNn→m = XnXm ,

CN†n→mInZmCNn→m = ZnZm ,

CN†n→mZnImCNn→m = ZnIm . (52)

28

Using these conjugations and that Y = iXZ, we can derive how all other Pauli products

are conjugated. [9] [4] [5]

These three operations, H and S on all qubits and controlled-NOT on all pairs of qubits,

generate the normalizer group and thus can be used to transform from any stabilizer state

to any other stabilizer state. These transformations correspond to the classes of symplec-

tic transformations within the toy model that were discussed in Sections I.B.2 and I.D.2.

That these transformations generate the normalizer group shows that the corresponding

symplectic transformations generate all symplectic transformations within the toy model.

Although the normalizer elements are in correspondence with symplectic transformations of

the generator matrix, to describe a transformation in the toy model completely also requires

knowing how the value vector changes and how the c values change. We can get an idea

of what this means for quantum mechanics by examining the H, S, and controlled-NOT

transformations more closely.

The Hadamard gate applied to the to the nth system swaps X and Z for that system,

while leaving Y the same, and thus clearly corresponds to the symplectic transformation

of Figure 15, which swaps columns n and N + n of the generator matrix. This swap does

not, however, take into account the change in sign of Y that accompanies a Hadamard gate.

To account for this, we could imagine flipping cn, i.e., taking cn to cn + 1 as part of the

transformation. With this change, we have fully accounted for all the effects of a Hadamard

gate.

An S gate on the nth system conjugates X to Y and Y to −X, while leaving Z unchanged.

It thus corresponds to the symplectic transformation of Figure 16, except that we need to

take into account the sign change when Y goes to −X. To do this, we need to correctly

choose the ~P of Equation 28, while adjusting the c values so we get the sign change only

when a state is stabilized by a Y observable.

The situation with the controlled-NOT is yet more complicated. We can account for the

controlled-NOT transformations (50) by using the symplectic transformation of Figure 17.

The problem arises because the Pauli operators are anti-commuting quantities, satisfying

XY Z = i, whereas the toy observables are commuting quantities, satisfying XY Z = W =

29

(−1)c. The troubling effects show up in the transformations of XnZm and YnYm:

CN†n→mXnZmCNn→m = XnZnXmZm = −YnYm ,

CN†n→mYnYmCNn→m = −XnZm . (53)

Just as for the phase gate, we believe that we could account for the negative signs here by

making flipping entries in the ~P vector and changing the c values in a nonlinear way.

III. LOCAL HIDDEN VARIABLES

A. Local-hidden-variable tables

The theory of local hidden variables (LHV) was proposed as a way of explaining the

probabilistic predictions of quantum mechanics as coming from the effects of unknown hidden

variables. It is known, however, that if the hidden variables are properties of local quantum

systems, they cannot account for all the predictions of quantum mechanics when the systems

are entangled. Thus entanglement is often thought of as nonlocal, or quantum, correlations.

In an LHV model, we suppose that a quantum system has a particular hidden state—an

ontic state in the terminology used here—but that we have limited information about the

ontic state and thus are restricted to making predictions based on that limited information.

The state of limited information we are calling an epistemic state. For example, in the present

context, we would say that an elementary two-level system has three spin components, x,

y, and z, but we cannot have complete information about all these components. An LHV

table is a chart that summarizes what we know about the three components of spin; it uses

random bits to represent what we do not know. For example, the two-qubit quantum state

|00〉 could be described by the LHV table shown in Table 1. This table clearly shows all of

the possible results if we measured X, Y or Z on either qubit. Obviously we would get a +1

value if we measured either IZ, ZI or ZZ, but all other measurements, besides the identity

on both qubits, would yield +1 or −1 with equal probability and are treated as random

answers. This table also clearly identifies the state |00〉 and none other. There is no other

state that could correctly have the measurement results predicted in this particular LHV

table.

The LHV tables we consider here require three bits of information for each elementary

system, one for each spin component. Of the 3N bits for N elementary systems, N bits

30

TABLE I: Hidden Variable table for |00〉

Qubit X Z Y

1 (−1)q1 1 (−1)q1

2 (−1)q2 1 (−1)q2

specify the correlation of the three spin components for each elementary system, i.e., XY Z =

W = (−1)c. The other 2N bits would be necessary to specify all spin components, i.e., to

specify an ontic state, but we only allow knowledge of N of these 2N bits, in accordance with

Spekkens’s knowledge balance principle. Thus our LHV tables are another representation

of the epistemic states in the toy model, but with the advantages that the random variables

and the correlations among the three spin components are explicitly displayed.

We now formulate the construction of LHV tables in detail. The measurement outcomes

for the three spin components can be either ±1, so we write the measurement outcomes of

X and Z and their connections with Y as

Xj = (−1)aj , Zj = (−1)bj , XjYjZj = (−1)cj , (54)

where aj, bj, and cj are binary digits for the j elementary system, the toybits of Spekkens’s

model. The N toybit constraints are contained in the generator matrix G. As we discussed

in Section I.B, we can expand the generator matrix to a symplectic matrix G, by adding N

linearly independent rows, and we can expand the value vector ~v to a vector ~V by adding

N random bits in a vector ~q. Thus the toybits contained in the vector ~A are constrained by

G ~A = ~V . (55)

Using the inverse of G, we can determine ~A:~a
~b

 = ~A = G−1~V = ΛGTΛ~V =

HT
Z GT

Z

HT
X GT

X

~v
~q

 =

HT
Z~v +GT

Z~q

HT
X~v +GT

X~q

 . (56)

This result determines theX and Z columns of the LHV table, and the Y column can be filled

in by using the assumed correlations of X, Y , and Z, i.e., Yj = (−1)cjXjZj = (−1)aj+bj+c+j.

We emphasize again that the LHV tables are another, perhaps more complete, way of

representing the results of Spekkens’s toy theory. Instead of using the N equations involving

~a and ~b to constrain the toybits and reduce the number of shaded boxes to 2N from the total

31

FIG. 19: The above state is associated with the linear equations, a1 + a2 + b1 = 1, b1 + b2 = 1 and

c1 + c2 = 0.

number of boxes, 4N , we here find ~a and ~b in terms of N bits we are allowed to know and N

random placeholders, the q’s. Changing the signs of the values in ~v or changing the c values

generally forces some predictions to change signs. [3] [2]

B. Examples of local-hidden-variable tables

The linear algebra and notation can get confusing, I think that it is important to work

out an example and to see these connections directly. Let’s examine the system |ψ〉 =

1√
2
(|01〉 + i|10〉). The stabilizers for this system are {Y X,−XY,−ZZ, II}, this can be

easily verified. The generator matrix for this system is,

G =

1 1 1 0

0 0 1 1

 . (57)

We can also write down the vector ~v to help us derive our toy theory picture. Equation 58

can be used to derive this visual representation,

1 1 1 0

0 0 1 1



a1

a2

b1

b2

 =

1

1

 . (58)

Figure 19 shows us our toy model representation of the state.

We now have the toy model version and the stabilizer formalism model for the same

state. Let’s see if we can figure out the LHV table for this same state. We add on our duel

32

generator matrix making our complete generator matrix,

G =


1 1 1 0

0 0 1 1

0 0 1 0

0 1 0 0

 . (59)

After our linear algebra to derive our local hidden variable tables we end up with

(
a1 a2 b1 b2

)
=
(
v1 + c1, v2, q1 + c2, q2

)


1 0 0 0

0 0 0 1

1 0 1 1

1 1 0 0

 , (60)

therefore,

a1 = v1 + q1 + r2, a2 = q2,

b1 = q1 + c1, b2 = v2 + q1 + c1. (61)

Remembering that XnYnZn = (−1)cn our local hidden variable table is shown in Table 2.

TABLE II: Hidden Variable table for |ψ〉 = 1√
2
(|01〉+ i|10〉)

Qubit X Z Y

1 (−1)v1+q1+q2 (−1)q1+c1 (−1)v1+q2

2 (−1)q2 (−1)v2+q1+c1 (−1)q2+v2+c1+c2+q1

To conclude that we have the same state we have to correctly choose elements of ~v and

our c values so that we get the correct measurement result for the stabilizers, i.e. in this

case we need to get −1 for XY and so on. To do this we must choose v1 = 0, v2 = 1, and

c1 +c2 = 0. Our final LHV table is shown in Table 3. How about the transformations? Let’s

do an example of a transformation so we can examine how each of the states change. We

will try preforming the normalizer H1S2. Performing this transformation on the stabilizers

we find that our new stabilizers are {−Y X,−ZZ,XY, II}. Sparing the reader the details

in the linear algebra, the associated LHV table for these stabilizers is given in Table 4.

33

TABLE III: Hidden Variable table for |ψ〉 = 1√
2
(|01〉+ i|10〉)

Qubit X Z Y

1 (−1)q1+q2 (−1)q1+c1 (−1)q2

2 (−1)q2 (−1)1+q1+c1 (−1)q2+1+q1

TABLE IV: Hidden Variable table for our new transformed state

Qubit X Z Y

1 (−1)1+q1+q2 (−1)q1+c1 (−1)1+q2

2 (−1)q2 (−1)q1+1+c1 (−1)q2+1+q1

If we instead do the transformations on the generator matrices we get G and also the

changes in the c and ~v values all given by,

G =


1 1 1 0

1 1 0 1

1 0 0 0

0 1 0 0.

 , c1 + c2 = 1 and ~v =

0

1

 . (62)

We can find the LHV table here to make sure that we obtain the same answer as before. For

this full generator matrix we get our LHV table shown in Table 5. This table appears to be

TABLE V: Hidden Variable table for our new transformed state

Qubit X Z Y

1 (−1)q1+c1 (−1)q1+q2+1 (−1)q2+1

2 (−1)q2+c2 (−1)q1+q2 (−1)q1

different from table 4 but in reality it is the same. LHV tables are the same when they have

the same predictions for the measurements that they can predict and the have uncertain

measures for everything else. These two tables have that quality; if we just examine the

instances where we get the random variables to cancel each other, we can quickly see that

we arrive at the correct measurement outcomes that we desire. Finally Figure 20 shows the

transformed toy theory box.

34

FIG. 20: The above state is associated with the linear equations, a1 + a2 + b1 = 0, b1 + b2 = 1 and

c1 + c2 = 1.

IV. CONCLUSIONS

The generator matrices are the common element in the toy model, the stabilizer formal-

ism, and the LHV tables. All of these descriptions use the same generator matrices, and

all of the transformations within the three descriptions are given in terms of symplectic

matrices. In fact, the elementary transformations on the generator matrices, corresponding

to the Hadamard gate, the S gate, and the controlled-NOT, were selected because it was

already known that they generate the normalizer group for the stabilizer formalism.

Each of these descriptions satisfies the knowledge balance principle. The box representa-

tion of the toy theory is based on satisfying a set of N linearly independent equations. If we

complete these N equations with N additional equations, which since they involve random

bits, do not constrain the values of toybits, we find the LHV tables. For both the toy theory

and the LHV tables, it is necessary to specify an additional bit for each elementary system,

which determines how to assign the value of the Y observable for that elementary system.

Since the LHV tables directly display all of this information, they are more informative than

Spekkens’s box representation.

Quantum mechanics is different in that no matter what value vector is chosen for a

generator matrix, i.e., for a stabilizer state, and what c bits are chosen, it is generally

not possible for the corresponding LHV table to mimic all of the predictions of quantum

mechanics for the stabilizer state under consideration. We are left, in this context, with the

familiar, but still puzzling conclusion that quantum mechanics cannot be fully described by

any local-hidden-variable model.

35

Appendix A: All of the group theory needed for this paper

Group theory has an essential role in our work and I think that it is important to have

a quick review. A group {S} is a set of elements with an elementary product “·”, such as

addition, scalar multiplication, or matrix multiplication such that for any group elements

s1 and s2 the following holds:

(i) For all s1, s2 in S we have s1 · s2 = s3 such that s3 ∈ S; this ensures that the group is

closed.

(ii) There exists an element e in S such that for all s in S, e · s = s · e = s holds; this

ensures the existence of an identity.

(iii) There exists a s−1
1 in the group S such that s−1

1 · s1 = e = s1 · s−1
1 where e is the identity

and is contained in the group S; this ensures the existence of an inverse element.

(iv) For all s1, s2, and s3 in S (s1 · s2) · s3 = s1 · (s2 · s3) ensures the associativity of group

elements.

We also need to know a little about group generators. Elementary products of generators

will yield all other group members, we say that a group is “generated” by this set of members

when this condition holds. Consider s1 and s2, elements of group S. We say these two

elements generate the group S if for every element h in S, h = sf11 · s
p1
2 · . . . s

fn

1 · s
pn

2 where fn

and pn are numbers.

We will be concerned with the Pauli group throughout this paper. The Pauli group is

the group of Pauli matrices, along with the matrix product,

P = {±I ± iI,±X,±iX,±Y,±iY,±Z,±iZ}. (A1)

We use the Pauli group in this paper to create stabilizer elements for systems of N -qubits by

taking a N -fold tensor product of elements of the Pauli group. The Pauli group is generated

by X and Z. [9] [8] [6]

Appendix B: Proof 1

We would like to prove that by simply defining N generators for the group of 2N stabilizers

specifying a particular state demands that the generators commute with each other. It is

easy to see that −I is not a stabilizer, there is no state |ψ〉 such that −I|ψ〉 = +|ψ〉.

i

All elements of the Pauli group either commute or anti-commute, therefore every stabilizer

generator must commute or anti-commute. Let’s assume that two generators for anN system

anti-commute, i.e. s1s2 = −s2s1. By assumption we know that both s1 and s2 are stabilizers,

i.e,

s1|ψ〉 = +|ψ〉,

s2|ψ〉 = +|ψ〉. (B1)

We also know that any matrix product of any arbitrary generators must be a stabilizer of

the same state., i.e,

s1s2|ψ〉 = +|ψ〉,

s2s1|ψ〉 = +|ψ〉. (B2)

Our assumption requires −s2s1 to be a stabilizer, i.e. −s2s1|ψ〉 = +|ψ〉 must be true and

thus −I|ψ〉 = +|ψ〉. We have arrived at a contradiction, since we know that −I is not a

stabilizer. Therefore our assumption must be false, and all generators for a stabilizer state

must commute.[9] [4] [5]

Appendix C: Proof 2

We would like to show that simply using Spekkens’s knowledge balance principle requires

that generators of his toy bits commute with one another, i.e [s1, s2] = 0. We plan to prove

this by induction, beginning the proof at the first non trivial case, as it is easy to see for an

elementary system where only one toy bit of information can be known. For the following

proof we will say that X and Z anti-commute in his toy theory.

For a system of two states we will examine the commutation condition in parts. Let us

first assume that s1 has toy bit corresponding to the identity I for the first state of the two.

We can assume this without loss of generality because the same thing could be done for the

second state and the second generator. The first generator is now s1 = IA where A can be

X, Y , or Z. If we take A = I we get the identity on both states, this is the trivial solution of

all systems with two states and will commute with everything. We will call s2 = BC where

we already know that B commutes with I in the first generator. We have two cases, case 1

[A,C] = 0 in this case we are done and both generators commute with each other. In case

ii

2, [A,C] 6= 0 in this case A 6= C and therefore we violate the knowledge balance principle

because whatever the value of the toy bit A we can infer the value of the toy bit C and have

total knowledge of the second system. Therefore [s1, s2] = 0.

Let’s expand this to the case where there is no explicit I in either generator. In this

instance we have three cases. The first case is where both of the generators commute, this

is what we are trying to prove so if this is the case we are done. Case two is when we know

that one of the bits for the two systems commutes. Since we have already done the identity

case we will examine the only other possible case here when the toy bit for this system is

the same for both generators. We have, s1 = AB and s2 = AC. If B and C commute we

are done; if they don’t commute it means that again they are completely different toy bits

and we again violate the knowledge balance principle for the second system. The last case

is where the first system of both generators anti-commute. If the toy bits for the second

system commute we again have the problem where we could extrapolate more information

about the first system then the knowledge balance principle allows and thus is not allowed

in Spekkens’s model. The only other case is where the toy bits of the second system also

anti-commute demanding the commutation of the generators. Therefore all generators for

two states must commute to correctly satisfy the knowledge balance principle.

We assume that the same holds for the N system case and examine the N + 1 system.

If the first N systems commute we can assume that the first N systems are an allowed

state of the knowledge balance principle and the new N + 1 system must be some sort of

product state. Therefore the last system must commute within all of the generators or we

would be adding two bits of information about the last system. If the first N systems of

the generators do not commute then by our induction assumption we conclude that the first

N systems cannot stand alone as a valid toy system, therefore the first N systems must be

entangled with the last system we added on. This can only be accomplished when the toy bit

for the last system anti-commutes within these generators. Therefore, by induction, when

we use the knowledge balance principle we enforce all generators for a particular system to

commute with one another.

iii

[1] Brian Eastin. Error channels and the threshold for fault-tolerant quantum computation. Ph.D.

thesis, arXiv:0710.2560, 2007.

[2] Albert Einstein, Boris Podolsky, and Nathan Rosen. Can a quantum-mechanical description

of physical reality be considered complete? Physical Review A, 47:777, 1935.

[3] Matthew B. Elliott. Stabilizer states and local realism. Ph.D. thesis, arXiv:0807.2876v1, 2008.

[4] D. Gottesman. Class of quantum error-correcting codes saturating the quantum hamming

bound. Phys. Rev. A 75, 54:1862, 1996.

[5] D. Gottesman. Stabilizer codes and quantum error correction. Phd Thesis, quant-ph/9705052,

1997.

[6] M. Hammermesh. Group Theory and its Applications to Physical Problems. Dover, New York,

1989.

[7] Arnold J. Insel, Lawrence E. Spence, and Stephen H. Friedberg. Linear Algebra. Pearson

Education, 2003.

[8] J.S. Lomont. Applications of Finite Groups. Dover, New York, 2003.

[9] Michael A. Nielson and Isaac L. Chuang. Quantum Computation and Quantum Information.

Cambridge University Press, 2000.

[10] Robert W. Spekkens. In defense of the epistemic view of quantum states: a toy theory. Phys.

Rev. A 75, 032110, 2007.

iv

