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Abstract: 

In this study we investigate the possibility of implementing two-qubit quantum 

logic gates in double Gaussian well traps based on ultra-cold collisions of spin 1/2 neutral 

atoms. In our model, two identical particles are initially trapped in wells that are 

sufficiently far apart to prevent tunneling. The traps are then brought together 

adiabatically and allowed to interact for a time and are finally separated again to the 

original distance. Using the quantum mechanics governing identical particles we 

calculate the adiabatic potential curves, which govern the dynamics. Under the 

assumption of adiabatic evolution, we explicitly solve for the conditional parameters, 

namely the speed at which the traps are brought together and the time they are allowed to 

interact, in terms of energy eigenvalue integrals and zero separation energy ratios that we 

have found numerically. We have also laid the groundwork for the path toward an exact 

solution that takes into account the non-adiabatic effects that arise in systems described 

by time-dependent Hamiltonians.  

 

Introduction: 

For a little over 10 years physicists have been seriously exploring the possible 

computing power of quantum systems and how one would build a capable instrument. 

Computing power has been instrumental for the scientific community for a long time now 

and has indeed brought forth great advances in almost every field, yet many answers 

remain out of reach because of the limitations of our current capabilities. Many problems 

simply would take too much time, or space for a classical computer.  Many experts 

believe that some of these problems would be no match for a quantum computer, one of 
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the most famous examples being Shor’s factoring algorithm that would render most of 

today’s encryption schemes obsolete, [1].   

Classical computers process information fundamentally in binary code, zeros and 

ones, yes or no, something or nothing, or at least can always be thought of as doing so.  A 

bit can be a mechanical switch, possibly a voltage, where the two distinguishable states 

would ideally never spontaneously switch values.  A quantum computer was naturally 

designed in the language of zeros and ones as well, but a quantum object that allows two 

possible states can only be properly described generally as a superposition.  It is 

superposition that allows two or more quantum particles to become entangled, a property 

that seems to play a pivotal role in quantum computing. 

 While the classical bit is either 0 or 1, the qubit is generally a superposition given 

by, 

 

� 

! 0 + " 1  where, 

� 

!
2

+ "
2

= 1 (1) 

With the logical zero and one being represented by orthonormal state vectors meaning, 

� 

0 1 = 1 0 = 0  and 

� 

0 0 = 11 = 1. In order to process bits of information, a classical 

computer uses what is referred to as logic gates, a deterministic operation where the 

output of bits is only dependent on the input of bits.  While a computer might use a 

multitude of different types of gates, all the operations that a classical computer is 

capable of can be simulated by combinations of one, so-called universal, gate called the 

nand gate, assuming that copies of bits can be made, [1].  A nand gate takes two bits as 

an input and first applies the and gate, which returns a one if and only if the two inputs 

are both one, and then switches the value of the and output.  A quantum computer maps 

states in Hilbert space to others according to the Schrödinger equation.  This map is a 
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unitary matrix.  Like classical computation, a combination of single qubit operations and 

one of the universal entangling logic gates can simulate any unitary operation used in a 

quantum-computing scheme.  The classical NOT operation acting on the logical basis 

states 

� 

0 ! 1 , 

� 

1 ! 0 , generalizes for quantum superpositions, 

1010 !""! +#+ .  This unitary map is represented in the logical basis by the 

matrix, 

 

 

� 

ˆ U 
NOT

=
0 1

1 0

! 

" 
# 

$ 

% 
& = ˆ ' 

x
, (2) 

where 

� 

ˆ ! 
x
 is a Pauli spin matrix. The most single general single-qubit unitary map can be 

written as, 

 

� 

ˆ U (!,") =
cos(! /2) #e

#i"
sin(! /2)

e
i"

sin(! /2) cos(! /2)

$ 

% 
& 

' 

( 
) , (3) 

which can be viewed as a rotation on the Bloch sphere, figure 1.   
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Figure 1.  The Bloch sphere 

Image courtesy [4] 

A two-qubit logic gate is a unitary operation where the evolution of one qubit is 

dependent on another qubit, [1].  One simple example of one these universal gates is the 

cnot gate which flips the value of one qubit, (target), if the other, (control), is set to one. 

 

1011

1110

0101

0000

!

!

!

!

       so that,    

!!
!
!
!

"

#

$$
$
$
$

%

&

=

0100
1000
0010
0001

cnot  (4) 

This gate can easily be shown to be entangling by taking the input state of 

2
1000 +

=! , a state that can be written as a product, 0
2

10
!

+
=" ; that is to 

say that we have maximal knowledge of the individual qubits.  
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 !"# $%
+

=

2
1100

cnot  (5) 

The output state cannot be written as a product of two states and is thus an entangled 

state.  Since the state of each individual qubit, having traced out the state of the other, 

must be described by completely mixed states, this is the maximally entangled state. 

 

Paths toward a QC 

There are many different design proposals currently being researched with 

varying degrees of progress toward a reliable machine.  For example, cavity QED along 

with trapped ion experiments have both been demonstrated to be capable of providing the 

platform on which quantum computation is possible using two-level systems coupled to a 

quantum oscillator, [2].  Experiments exploiting the properties NMR (nuclear magnetic 

resonance) and quantum dots in order to demonstrate quantum computation are also 

progressing.  There has been some work done studying the possibility of doing quantum 

computation with neutral atoms in optical dipole traps using ultra-cold collisions as an 

entangling gate where the qubits are encoded in the motional states of the atom [3], in 

contrast to our model where qubits will be encoded in the spin states of the atoms. Most 

of the work in quantum computing with neutral atoms is contemplated in optical lattices, 

[11], using spin dependent trapping.  Researchers have proposed encoding qubits in the 

hyperfine ground manifold and achieving entanglement via optical dipole-dipole 

coupling, [12], ground state collisions, [13], or magnetic spin-spin interactions, [14].  

There have already been some experiments carried out investigating the possibility of 

quantum information processing using arrays of optical tweezer traps, [15],[16]. 
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Quantum logic with trapped atoms: 

One of the major difficulties in quantum computing is the delicacy of the 

apparatus; an uphill battle of sorts must be fought where on the one hand interaction 

between different qubits is necessary to form an entangling gate but we don’t want 

interaction with the environment which usually introduces error.  This problem of the 

environmental perturbation is one reason quantum computing with neutral atoms is an 

attractive idea.  The quantum computer requires the information carriers to be isolated 

and mobile, reasons that motivate us to study how computing can be achieved with laser 

tweezers, an environment that has already been studied by [4].  When an external electric 

field, tEtE
lo

!cos),0( =

rr
, is applied to a neutral two-level atom a dipole moment is 

induced, given by bdad
ab

v̂r
=   [5].  The force on a dipole with linear polarizability ! is 

given classically by 
  

� 

r 
d ! "( )

r 
E = #

r 
E ! "( )

r 
E =

#

2
"(E

2
) showing that the polarizable atom 

can be trapped in regions where the intensity is at a local maximum [6].  The quantum 

mechanical two level atom feels a reactive force given by  

 
( ) ( )

( )
24

4 22
2

2

!
+

"
+#

!$#
#=

ol

ol

reac
F

%%

%%h   (6) 

Where 
o

! is the transition frequency between the two atomic levels and ! is the 

spontaneous emission rate and! , the Rabi frequency, is defined by   

� 

h! =

r 
d 

ab
"

r 
E 

o
 [5].  

We can see that the force changes sign with 
ol

!! " , so that when 
ol

!! < , red detuning, 

the atom will be attracted to regions of high intensity because of the gradient term, giving 

us a restoring force that has a maximum value on the order of !"# hmaxF  [5]. Laser 
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tweezers can use this principle to trap neutral atoms by focusing a collimated beam 

creating a small region of high intensity coherent light and are able to translate atoms 

over distances far greater than the scale of our problem, [7].  The potential created by an 

optical dipole-force trap has a depth 
  

� 

V
o
(!,") =

h!
2

4"
 where 

� 

!  is the detuning.  The rate at 

which photons are spontaneously scattered, which leads to heating of the trapped atoms, 

is given by 

� 

!
s
(",#) =

$"2

4#2
, [8].   Looking at the depth and scattering expressions tells us 

that by increasing the Rabi frequency, which is done by increasing the intensity, and 

increasing the detuning accordingly so that the potential does not change, we should be 

able to achieve low scattering rates and therefore we will assume that the laser tweezers 

are operating far-off resonance from any transition frequencies.  We will also assume that 

we can get very tight confinement in two of the three spatial dimensions. This effectively 

reduces the potential the atom sees due to the laser to a one-dimensional Gaussian profile 

of the form, 

 

� 

V (x) = !V
0

exp !
x

2

2" 2

# 

$ 
% 

& 

' 
(   (7) 

 The time-dependent Hamiltonian that describes two trapped atoms being brought 

together and allowed to interact for some time before being separated again takes the 

form  

)(ˆ))(,())(,(
2

))(,,(ˆ
21212

2

2

2
1

22

21 xxatxVtxV
xxm

txxH
s

!"+++##
$

%
&&
'

(
+

!
= )**

+
+

+
+

*
h    (8) 

where, 

 

� 

V (x ,!) = "V
o

exp "
(x " (!

o
"!(t))( )

2

2# 2

$ 

% 
& 

' & 

( 

) 
& 

* & 

+ exp "
(x + (!

o
"!(t))

2

2# 2

$ 

% 
' 

( 

) 
* 

+ 

, 

- 

. 

/ 

0 .  (9) 
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o
!2  being the initial separation of the traps and )(2 t! is the change in separation as a 

function of time.  We have used a Dirac delta function to describe the atom-atom 

interaction since they are neutral and is valid as long as the atom stays in the vibrational 

ground states in the dimensions that we are ignoring, [3].  This “contact interaction” 

describes the s-wave scattering of neutral atoms, valid when the de Broglie wavelength of 

the atomic motion is large compared to the range of the interaction forces [3].  Since the 

atoms are neutral, these forces act only over angstrom scales, much smaller that the size 

of the trapped atomic wave packet.  The quantity a  is the interaction strength and is 

proportional to the scattering length, [3].   We have used the operator 
s

P̂ , a projector onto 

the singlet state, to describe the collisions in S-wave scattering because, in the case of 

fermionic spin 1/2 atoms, only the singlet states will collide since two atoms with anti-

symmetrical motional wave-functions will never be found at the same place at the same 

time.  The interaction operator can be expressed as a unitary time evolution matrix, 

� 

ˆ T  in 

the following way, 

 

  

� 

ˆ T =

e
!

i

h
E (a )t

0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

" 

# 

$ 

$ 

$ 

$ 

$ 

% 

& 

' 

' 

' 

' 

' 
T

T

T

s

1

0

1

0

!

+

"

"

"

"

 (10) 

If we use the standard singlet/triplet definitions given by 
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2

0

1

0

1

!"#"!
=

!!=

!"+"!
=

""=

#

+

S

T

T

T

$

$

$

$

       (11) 

And define spin up to be logical zero and spin down to be logical one, arriving at a 

logical basis given by 

 

T

ST

ST

T

1

00

00

1

11
2

10

2
01

00

!

+

=""=

!
="#=

+

=#"=

=##=

$

$$

$$

$

  (12) 

We can use these definitions to express the operator in Eq. (10) in the logical basis.  We 

seek a unitary operator, Û  that will map an arbitrary vector expressed in the logical basis 

to the corresponding vector expressed in the single/triplet basis, so that 

TSl
U /
ˆ !! = with the subscript denoting in which basis the vectors are expressed.  We 

can make the following vector assignments to help us find the map: 

 

2
0
1
0
1

2
1

0
0
1
0

ˆ01ˆ

0
0
1
0

0
0
0
1

ˆ00ˆ

00

1

ST

T

UU

UU

!!

!

+

=

"
"
"
"

#

$

%
%
%
%

&

'

=

"
"
"
"

#

$

%
%
%
%

&

'

=

=

"
"
"
"

#

$

%
%
%
%

&

'

=

"
"
"
"

#

$

%
%
%
%

&

'

=
+

    

T

ST

UU

UU

1

00

1
0
0
0

1
0
0
0

ˆ11ˆ

2
0
1
0
1

2
1

0
1
0
0

ˆ10ˆ

!=

"
"
"
"

#

$

%
%
%
%

&

'

=

"
"
"
"

#

$

%
%
%
%

&

'

=

!
=

"
"
"
"

#
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%
%

&

'!

=

"
"
"
"

#

$

%
%
%
%

&

'

=

(

((

(13) 
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The following matrix can easily be shown to satisfy the requirements; 

 

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

& '

=

1000

0
2

1
2

10
0001

0
2

1
2

10

Û   (14) 

If the unitary time-evolution operator acting on an arbitrary state expressed in the 

singlet/triplet basis is described by

� 

ˆ T 
S /T

!
S /T

= " ! 
S /T

  and the evolution operator 

expressed in the logical basis acting on an arbitrary state in the logical basis is described 

by

� 

ˆ T 
l
!

l
= " ! 

l
, then we can say that the two operators expressed in the different basis 

vectors are related through the unitary map in the following way, 

 

  

� 

ˆ U 
+ ˆ T 

S /T

ˆ U = ˆ T 
l

=

1 0 0 0

0
e

! iE(a )t

h + 1

2

!e

!iE(a )t

h + 1

2
0

0
!e

! iE(a )t

h + 1

2

e

!iE(a )t

h + 1

2
0

0 0 0 1

" 

# 

$ 

$ 

$ 

$ 

$ 

$ 
$ 

% 

& 

' 

' 

' 

' 

' 

' 
' 

(

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

" 

# 

$ 

$ 

$ 

$ 

% 

& 

' 

' 

' 

' 

= swap   (15) 

And if we set !=
h

taE )(  then we see that the exchange interaction is the generator of the 

swap gate, which acts to switch the values of any two qubits. 

 

Protocol for two-qubit quantum logic: 

We define a qubit to be a spin 1/2 neutral atom cooled down to the ground state of a 

potential of the form given in Eq. (7), using the definition already given for the two 

logical states.  Single qubit operations can easily be done on these qubits by the 

application of external E/M fields.  When two traps are brought into close proximity of 



13 

one another, an atom that is definitely localized in one of the wells is only in a stationary-

state of the full Hamiltonian, Eq. (8), when the traps are infinitely far apart; but if the 

traps are far enough apart that the tunneling frequency is large compared to the time scale 

of the gate operation then these can essentially be thought of as stationary states.  To 

correctly describe a particle localized in one trap, the state must be described in terms of 

the actual eigenstates of the double-well configuration.  The ground state of the double 

well configuration will be symmetric and denoted as 

� 

S , figure 2, while the first excited 

state will be anti-symmetric and denoted as 

� 

A , figure 3.   

 

Figure 2 

 

Figure 3 

These states allow us to define a particle on the left, figure 4, as 
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� 

L =
S + A

2
  (16) 

And a particle on the right, figure 5, as 

 

� 

R =
S ! A

2
  (17) 

 

Figure 4 

 

Figure 5 

As the separation of the traps increases the S  and A states become degenerate, 

sending the tunneling period toward infinity.  An initial separation of !4  was chosen for 

this study, but larger initial separations should be investigated for reasons that will be 

alluded to later.  If we say that our first qubit is the particle in the trap on the left and our 

second qubit is the particle on the right and spin up is logical zero and spin down is 
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logical one,  then these definitions allow us to ascribed the following properly 

symmetrized wave functions to our logical basis, 

 

� 

00 =

L !
1
" R !

2
# R !

1
" L !

2

2

� 

=
AS ! SA

2

" 

# 
$ 

% 

& 
' (+1

T  

 

� 

01 =

L !
1
" R #

2
$ R #

1
" L !

2

2

� 

=
AS ! SA

2

" 

# 
$ 

% 

& 
' (0

T
+

SS ! AA

2

" 

# 
$ 

% 

& 
' (0

S          (18) 

� 

10 =

L !
1
" R #

2
$ R #

1
" L !

2

2

� 

=
AS ! SA

2

" 

# 
$ 

% 

& 
' (0

T !
SS ! AA

2

" 

# 
$ 

% 

& 
' (0

S  

� 

11 =

L !
1
" R !

2
# R !

1
" L !

2

2

� 

=
AS ! SA

2

" 

# 
$ 

% 

& 
' (!1

T  

 

where the tensor product is written for particles 1 and 2 respectively. 

It is clear that the 01  and 10  states differ only by a relative phase between the 

singlet and triplet states that appear in the superpositions.  More specifically, if a relative 

phase of -1 is accumulated then the qubits will have undergone a swap operation.  

Recalling the difference in s-wave collisions for the different spin states suggests an 

accumulation of this relative phase should in fact be entirely possible.  The swap gate, 

however, is not an entangling gate and therefore we should be interested in the entangling 

square root of swap gate which leaves the 00  and 11  states unchanged but evolves the 

01  and 10  into maximally entangled states.  The 

� 

swap  gate is another universal 

gate and is related to the cnot gate through single qubit operations as 

� 

cnot = H
A
!

A

"1
!

B
swap!

A

2
swapH

A
 where 

� 

H
A
 and 

� 

!
A ,B

 are the single qubit operators, 
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[3].  This gate is also generated from the exchange interaction by setting 
2

3)( !
=

h

taE  in 

Eq. (15). 
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0
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2

1! i

2
0

0
1! i

2

1+ i

2
0

0 0 0 1

" 

# 

$ 

$ 

$ 

$ 

$ 

% 

& 
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' 

' 
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         (19) 

 

� 

swap 01 =
e

i! / 4

2
01 " i10( )

� 

=
AS ! SA

2

" 

# 
$ 

% 

& 
' (0

T
+ i

SS ! AA

2

" 

# 
$ 

% 

& 
' (0

S      (20) 

 

This shows that a singlet-triplet relative phase of 

� 

i  will implement a square root of swap 

gate, which won’t surprise the experienced reader since we’ve already said that a relative 

phase of –1 is needed for the full swap.   

 To calculate the phase evolution we solve the time-dependent Schrödinger 

equation, !! Hi ˆ=&h  where the time dependent Hamiltonian is given in Eq. (8).   The 

solution can be expanded in terms of the time dependent instantaneous energy eigenstates 

of the Hamiltonian, 

 Expansion: 

� 

! = C
n
(t) "

n
(t)

n

#             (21) 

 giving: !! "=#
$

%
&
'

(
"

)
)

)
)

+"
n

nnn

n

nnnn
ttEtCtC

t
ttCi )()()())()())(()(( *

*
*

*&h . (22) 

This means that the phase evolution will be governed by coupled differential equations of 

the form, 

 )()()( tCtE
i

C
t

tC
mm

n

nmnm
h

& !
="

#

#
"

#

#
+ $

%

%               (23) 
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The square root of swap operation produces states that are spanned by the 

� 

SS ,
AS ! SA

2
, AA  basis vectors and therefore we desire the diabatic coupling term in 

Eq. (23) to be negligible, leaving us with an adiabatic evolution given by, 

 ])([)0()( '

0

'
dttE

i
ExpCtC

t

nnn !
"

=
h

                   (24) 

This is the adiabatic theorem of quantum mechanics and is valid when 

� 

v << v
c , that is 

to say the velocity describing the movement of the traps is slow compared to some 

characteristic velocity that can be defined as 

� 

v
c

~ !"  where the characteristic 

frequency of the trap, 

� 

! , is estimated by expanding the Gaussian potential in a power 

series and taking the quadratic coefficient as the spring constant and sigma represents a 

reasonable estimation of the extent of the ground state wavelength. 

In order to evolve the logical basis adiabatically, the wave functions must be 

expressed in terms of the eigenstates of the full Hamiltonian, a description that does not 

apply to the singlet states that appear in Eq. (18).  If we decompose the singlet states into 

the true eigenstates by introducing resolutions of the identity of the form, 

! ""=

k

kk
1̂  then we get another form of Eq. (18) appearing as, 
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         (25) 
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If we define SS
~~  and AA

~~  as the eigenstates of the full Hamiltonian that map onto the 

states AAandSS  in the limit where the strength of the interaction goes to zero, then 

we can re-express Eq. (25) as, 

� 

00 =
AS ! SA

2
"

+1

T

01 =
AS ! SA

2
"

0

T
+

˜ S ̃  S SS ˜ S ̃  S + #
k

SS

k$ ˜ S ˜ S 

% #
k
! ˜ A ̃  A AA ˜ A ̃  A ! # & k 
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& k $ ˜ A ˜ A 

% # & k 

2
"

0

S

10 =
AS ! SA

2
"

0

T !

˜ S ̃  S SS ˜ S ̃  S + #
k

SS

k$ ˜ S ˜ S 

% #
k
! ˜ A ̃  A AA ˜ A ̃  A ! # & k 
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& k $ ˜ A ˜ A 

% # & k 

2
"

0

S

11 =
AS ! SA

2
"!1

T

 (26) 

If we are working with a weak interaction then we can say that 

� 

˜ S ̃  S SS ! ˜ A ̃  A AA !1 

and the summation terms that appear in Eq. (26) will be negligible, leaving us with, 
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AS ! SA

2
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T

01 #
AS ! SA
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T
+

˜ S ̃  S ! ˜ A ̃  A 
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S
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"

0
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˜ S ̃  S ! ˜ A ̃  A 

2
"

0

S
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AS ! SA

2
"!1

T

               (27) 

These states will adiabatically evolve to give the following general states, 
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"

0
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T

  (28) 

With this final form, we can solve for the required phase ratios that implement the swap 

or square root of swap gate by recognizing 

� 

C
AS

 as a global phase and factoring it out of 

the logical basis leaving us with, 
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    (29) 

This shows that there are two requirements for the swap gate, namely 

� 

C ˜ S ˜ S 

C ˜ A ̃  S 

= !
1

2
 

and

� 

C ˜ A ˜ A 

C ˜ S ˜ S 

= !1, and Eq. (20) tells us that the requirements for the square root of swap gate 

are given by (i)

� 

C ˜ S ˜ S 

C ˜ A ̃  S 

=
i

2
 and (ii)

� 

C ˜ A ˜ A 

C ˜ S ˜ S 

= !1. It is worth noting that one can avoid the 

problem of double occupancy within a well by controlling the phase of the ratio 

SS

AA

C

C

~~

~~
.  In 

fact, if the ratio happens to be positive one rather than negative one, the atoms will 

definitely be found in the same trap at the completion of the operation, which can be 
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verified by referring back to Eq. (16),(17).  

  The fact that we have two conditions that must be met dictates that we need two 

“control knobs” in order to guarantee the necessary control.  The two natural knobs to 

choose are the velocity at which the traps are brought together and the time that is 

allowed elapse while the traps are directly overlapped.  If we assume a constant velocity 

then the above phase ratios can be solved exactly for the acceptable velocities and 

interaction times as long as they meet the previously stated adiabaticity requirements.   

We combine the phase ratios with the adiabatic evolution from Eq. (24) to arrive at; 
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Where n and m must be integers.  These equations can be solved for the acceptable 

velocity and interaction time giving 

 

(33) 
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� 

t
swap

=

!h(1/2 + 2m) + v
"1

(E ˜ S ˜ S 
(# ') " E
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(# '))d# '

2$

"2$

%
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' 
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) 

* 
+ 

(E
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" E ˜ S ˜ S 

)
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        (34) 

giving a countably infinite number of suitable velocities and times below the adiabatic 

threshold.  It must be true that the time it takes to successfully produce the entangled 

states should go to infinity as the strength of the interaction goes to zero.  These 

equations can be used to show that by noting that when the interaction is turned off, 

� 

E ˜ S ˜ S 
(!) = 2E

S
(!), E ˜ A ˜ A 

(!) = 2E
A
(!) and )()()( !!!

SAAS
EEE += , and when these 

relations are plugged into Eq. (33),(34), the result is 0=
swap

v  and !=
swap

t .   Shown 

below are graphs of the relevant energy curves, with figure 6 showing a case of very 

weak interaction and figure 7 showing a case of very strong interaction to illustrate the 

energy splitting where in the case of no interaction there would be a threefold 

degeneracy. 

 

Figure 6: Trap separation 

� 

!2" #$ # 2"( )  
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Figure 7:  Trap separation 

� 

!2" #$ # 2"( )  

Results: 

I used a grid method procedure to calculate the single particle atom-laser interaction 

energy eigenvalues and eigenfunctions first derived in [9].  To find acceptable velocities 

and interaction times predicted by the adiabatic evolution (see Appendix 1) we must find 

the 
ASSS

EE ,~~ and 
AA

E ~~  energy curves as a function of trap separation.  Because the state 

corresponding to the 
AS

E is a triplet state the energy curve is not a function of the 

interaction strength and can therefore be defined as )()()( !!!
ASAS

EEE += .  The two 

single particle curves can be found by interpolating a list of energy values that are 

calculated by evaluating the code at different trap separations and tabulating the ground 

and first excited state values.  The code by itself is not capable of solving the interaction 

problem and therefore will find the 
SS

E ~~ and 
AA

E ~~  curves by diagonalizing the full 

problem, using the non-interacting states as a basis.  We define a non-interacting 

Hamiltonian as 

� 

ˆ H 
0
 as diagonal matrix with elements given by iijjoi

EH !="" ˆ  then 

the full Hamiltonian is given by 
Io

HHH ˆˆˆ += where the interaction-Hamiltonian matrix 
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elements are given by jiij
HH !!= 1,1
ˆ  and the first order energy corrections due to 

the interaction can be by calculating the eigenvalues of Ĥ .   If we introduce new indices 

where q  and r  refer to the single particle orbitals that make of the two-particle states 

indexed by i , likewise s  and t refer to the single particle orbitals that make the two-

particle states indexed by j . 
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  (35) 

These single particle orbitals can be calculated using the code, and the routine to find 

these functions of trap separation is shown in the Appendix 2.  In order to calculate the 

fidelity we define 

� 

F = ! " "
2

where the primed wave function is what results from the 

physical gate operation and the unprimed wave function is what an ideal square root of 

swap gate would produce.  If we take the input state of 01  then 
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Now we can see that 

2

222 AASS

AS C
i

C
iC

F +!= .   

 We will solve the time-dependent Schrödinger equation to find ! "  by expanding 
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the solution in terms energy eigenfunctions of the unperturbed Hamiltonian. 

 Expansion: 

� 

! " = C
n
(t) #

n
(t)

n

$     (38) 

For the triplet states we arrive at a set of coupled differential equations similar to Eq. (23) 
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Where N is the number of single particle bound states the double well configuration can 

support.  In order to get a solution for the singlet states we decompose the full 

Hamiltonian into the non-interacting and perturbation matrices that have already been 

defined,  
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If we use the tsrq ,,,  notation introduced earlier and look at singlet state, the triplet 

matrix elements have a similar form, we arrive at the following form, 
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These matrix elements have additional factors 2 when rq =  and ts = .  A function like 
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! "
"

= dxxxg
srrs

),(),()( #$
#

#$#  can be evaluated for a specific trap separation 

numerically by recalling the definition of the partial derivative of ),( yxf  with respect to 

x  at the point ),( 00 yx , [10]: 
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Giving the following form for )(!
rs

g evaluated at a specific trap separation: 
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#
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Once Eq. (44) is evaluated at several different separations, an interpolation function can 

be used to approximate )(!
rs

g . The numerical routine used to evaluate these matrix 

elements is shown in appendix section [3].  Once all the necessary functions have been 

calculated, the coupled differential equations, Eq. (39), (41), can be solved numerically 

using Mathematica’s numerical routine, shown in appendix section [4,5].  

 If we take the case where the traps are overlapped and expand the Gaussian 

potential in a power series, taking the quadratic coefficient as the spring constant, we 

arrive at 

� 

! =
2V

o

m"
2

 where 

� 

V
o
 is the depth of an individual well and we can then define a 

characteristic energy as   

� 

E
c

= h! .  The characteristic energy should be a good 

approximation of the non-interacting energy of two atoms in the ground state of 

overlapped wells.  For this study, the chosen parameters yield 

� 

E
c

= 3 !1.73205 , 

whereas the actual value of two atoms in the ground state of overlapping wells is 

calculated to be 

� 

E
SS

(0) = 1.696 .  Calculating 

� 

!  allows us to define a characteristic time 
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as 

� 

t
c

=
2!

"
# 3.6276 and a characteristic velocity as 

� 

v
c

=
!

t
c

= 0.551329 . 

Interaction 

strength 

� 

v
v

c

 

� 

t
t
c

 
Fidelity 

a = 0.001 0.02861975 28.6040357 0.994453 

 0.03273145 26.0957107 0.993156 

 0.03822291 23.5873029 0.989876 

    

a = 0.01 0.02912308 28.1114235 0.969835 

    

    

a = 0.1 0.01257937 67.8443048 0.912787 

 0.01373973 64.5145551 0.929059 

 0.01513592 61.1961076 0.943393 

 0.01684796 57.8553313 0.956499 

 0.01785792 56.1903187 0.963157 

 0.03413461 24.0022053 0.989627 

 0.03855212 22.3373305 0.991279 

 0.04428281 20.6724556 0.986309 

 0.05201468 19.0075808 0.972878 

 0.06301791 17.3427335 0.97231 

 0.07992524 15.6778586 0.960569 

 0.10923151 14.0129838 0.791559 

    

a = 0.25 0.04237071 19.364318 0.947109 

 0.0469705 18.5542507 0.964924 

 0.0526905 17.744211 0.955282 

    

a = 0.4 0.05050179 16.271171 0.939334 

    

a = 0.5 0.05220222 14.6697817 0.911449 

    

a = 0.6 0.06120991 13.4527787 0.916877 

    

a = 1 0.02733123 29.7135847 0.370697 

 0.08220881 10.0599294 0.806297 

 

Discussion and Outlook: 

The fidelity is a function of at least three variables, the strength of the interaction, 
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the velocity at which the traps are brought together, and the time for which the traps are 

overlapped.  These results seem fairly good as long as two conditions are met: (i) the 

chosen velocity must be about two orders of magnitude smaller than the characteristic 

velocity defined earlier, (ii) the strength of the delta interaction must be about an order of 

magnitude smaller than a characteristic energy which can be defined as the ground state 

energy of a single particle when the traps are overlapped.  These requirements are to be 

expected since the predicted acceptable velocities and interaction times were derived 

using the adiabatic theorem and first order perturbation theory.  If the strength of the delta 

interaction gets too large, it can no longer be correctly thought of as a perturbation and 

more importantly the approximation 1~~~~
!! AAAASSSS  quickly becomes invalid.  

In fact the actual value of the overlap integrals might be a good measure of the fidelity 

not including diabatic effects, something that I will be investigating soon.  It is also 

thought that the initial separation of the traps might play an important role in the fidelity, 

a notion that can be illustrated by noting that, 

 

� 

SS =
LL + RR + LR + RL

2
  (45) 

 

� 

AA =
LL + RR ! LR + RL( )

2
  (46) 

and therefore the corresponding perturbed states can be written as, 

 

� 

˜ S ̃  S =

˜ L ̃  L + ˜ R ̃  R + ˜ L ̃  R + ˜ R ̃  L 

2
  (47) 

 

� 

˜ A ̃  A =

˜ L ̃  L + ˜ R ̃  R ! ˜ L ̃  R + ˜ R ̃  L ( )

2
. (48) 

However, in the case that the traps are very far apart, atoms in different wells will not feel 
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a weak interaction giving 

� 

˜ L ̃  R ! LR  and 

� 

˜ R ̃  L ! RL , and therefore, 

 

� 

˜ S ̃  S ! ˜ A ̃  A " LR + RL = SS ! AA  , (49) 

which is the approximation we made in order to get (27).    

 An unexpected result is that longer interaction times also lead to lower fidelities.  

This simply might be a result of not having sufficient initial separation, but further 

analysis is needed. I believe a Landau-Zener analysis could yield an optimization scheme 

that might maximize the fidelity.  A Landau-Zener analysis aims to quantify the 

probability of a particle making a transition from one energy eigenstate to another based 

on the gap between the relevant energy curves and the speed at which the curves are 

being traversed.  One basic test that must be carried out is the addition of other possible 

states that the atoms can be excited into that were excluded from this solution for the 

reason of greatly reducing the length of code that is necessary.  I believe that including 

these states will result in relatively small corrections, perhaps reductions, in the 

calculated fidelities, that will need to be verified. I also want to gather more data in order 

to quantify how the fidelity falls off with increasing velocity and the strength of the delta 

interaction and compared this to the predictions made by the Landau-Zener theorem.  

Other velocity profiles should also be experimented with to investigate the possibility of 

an increase in fidelity when the magnitude of acceleration is decreased.  In this study we 

have assumed we have access to neutral spin 1/2 atoms, an assumption that can never be 

realized since any real atom will have a nucleus that also has spin.  The hyperfine 

interaction will have to taken into account in any simulation claiming to be realistic.  
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Appendix 

1. Adiabatic prediction routine 
2. Interaction exchange functions routine 
3. Diabatic coupling functions routine 
4. Coupled ODE triplet solution routine 
5. Coupled ODE singlet solution routine 

 


